
®

RStudio Server Pro
Administrator’s Guide

RStudio Server Professional v1.0.136

Copyright © 2016 RStudio, Inc.

Contents

1 Getting Started 3

1.1 Introduction . 3

1.2 Installation . 4

1.3 Management Script . 5

1.4 Activation . 6

1.5 Accessing the Server . 6

2 Server Management 8

2.1 Core Administrative Tasks . 8

2.2 Administrative Dashboard . 11

3 Authenticating Users 13

3.1 PAM Authentication . 13

3.2 Restricting Access to Specific Users . 15

3.3 Google Accounts . 16

3.4 Customizing the Sign-In Page . 20

3.5 Proxied Authentication . 20

4 Access and Security 24

4.1 Network Port and Address . 24

4.2 IP Access Rules . 24

4.3 Frame Origin . 25

4.4 Secure Sockets (SSL) . 25

4.5 Server Permissions . 27

4.6 Running with a Proxy . 28

1

CONTENTS 2

5 R Sessions 32

5.1 R Executable and Libraries . 32

5.2 User and Group Profiles . 34

5.3 Multiple R Sessions . 37

5.4 PAM Sessions . 38

5.5 Kerberos . 41

5.6 Working Directories . 43

5.7 Workspace Management . 44

5.8 Project Sharing . 46

5.9 Package Installation . 48

5.10 Feature Limits . 49

6 R Versions 52

6.1 Overview . 52

6.2 Installing Multiple Versions of R . 52

6.3 Configuring the Default Version of R . 54

6.4 Using Multiple Versions of R Concurrently . 56

6.5 Managing Upgrades of R . 57

7 Load Balancing 59

7.1 Overview . 59

7.2 Configuration . 59

7.3 Access and Availablity . 64

7.4 Balancing Methods . 66

8 Auditing and Monitoring 68

8.1 Auditing Configuration . 68

8.2 Monitoring Configuration . 71

8.3 Server Health Checks . 73

9 License Management 75

9.1 Product Activation . 75

9.2 Connectivity Requirements . 75

Chapter 1

Getting Started

1.1 Introduction

RStudio Server enables you to provide a browser based interface (the RStudio IDE) to a version of
R running on a remote Linux server. Deploying R and RStudio on a server has a number of benefits,
including:

• The ability to access R sessions from any computer in any location;
• Easy sharing of code, data, and other files with colleagues;
• Allowing multiple users to share access to the more powerful compute resources (memory,

processors, etc.) available on a well equipped server; and
• Centralized installation and configuration of R, R packages, TeX, and other supporting

libraries.

This manual describes RStudio Server Professional Edition, which adds many enhancements to the
open-source version of RStudio Server, including:

• The ability to run multiple concurrent R sessions per-user.
• Flexible use of multiple versions of R on the same server.
• Project sharing for easy collaboration within workgroups.
• Load balancing for increased capacity and higher availability.
• An administrative dashboard that provides insight into active sessions, server health, and

monitoring of system-wide and per-user performance and resource metrics;
• Authentication using system accounts, ActiveDirectory, LDAP, or Google Accounts;
• Full support for PAM (including PAM sessions for dynamically provisioning user resources);
• Ability to establish per-user or per-group CPU priorities and memory limits;
• HTTP enhancements including support for SSL and keep-alive for improved performance;
• Ability to restrict access to the server by IP;
• Customizable server health checks; and
• Suspend, terminate, or assume control of user sessions; Impersonate users for assistance and

troubleshooting.

3

CHAPTER 1. GETTING STARTED 4

1.2 Installation

1.2.1 Prerequisites

RStudio Server requires a previous installation of R version 2.11.1 or higher; see below for instructions
on installing R on your specific Linux distribution.

RStudio Server interacts frequently with user home directories. If you mount home directories with
NFS, we recommend using the async mount option along with a modern, high-throughput network
connection that can support many simultaneous clients. If you’d like your users to be able to share
their projects with each other, see the section on Project Sharing for additional NFS requirements.

1.2.2 RedHat / CentOS (5+)

Installing R

You can install R for RedHat and CentOS using the instructions on CRAN: https://cran.rstudio.
com/bin/linux/redhat/README.

Installation Commands

After downloading the appropriate RedHat/CentOS package for RStudio Server Professional you
should execute the following command to complete the installation:

sudo yum install --nogpgcheck <rstudio-server-package.rpm>

NOTE: If you are running on RedHat 5 you will need to enable the EPEL repository to satisfy
RStudio’s dependencies on the libffi and rrdtool packages (these packages are part of the base
repository in RedHat 6 and 7 so EPEL is not required on those systems).

1.2.3 Debian (8+) / Ubuntu (12.04+)

Installing R

To install the latest version of R you should first add the CRAN repository to your system as
described here:

• Debian: https://cran.rstudio.com/bin/linux/debian/README.html
• Ubuntu: https://cran.rstudio.com/bin/linux/ubuntu/README.html

You can then install R using the following command:

$ sudo apt-get install r-base

NOTE: If you do not add the CRAN Debian or Ubuntu repository as described above this command
will install the version of R corresponding to your current system version. Since this version of R
may be a year or two old it is strongly recommended that you add the CRAN repositories so you
can run the most up to date version of R.

https://cran.rstudio.com/bin/linux/redhat/README
https://cran.rstudio.com/bin/linux/redhat/README
https://fedoraproject.org/wiki/EPEL
https://cran.rstudio.com/bin/linux/debian/README.html
https://cran.rstudio.com/bin/linux/ubuntu/README.html

CHAPTER 1. GETTING STARTED 5

Installation Commands

After downloading the appropriate Debian/Ubuntu package for RStudio Server Professional you
should execute the following commands to complete the installation:

$ sudo apt-get install gdebi-core
$ sudo gdebi <rstudio-server-package.deb>

1.2.4 openSUSE / SLES (11+)

Installing R

You can install R for openSUSE or SLES using the instructions on CRAN: https://cran.rstudio.
com/bin/linux/suse/.

Note that the binaries linked to from this page have one additional requirement that isn’t satisfied
using the default repositories. Before installing R you should install the libgfortran43 package.
This package is available from the SUSE Linux Enterprise SDK. If the SDK repository is available
in your environment you can install libgfortran43 as follows:

$ sudo zypper install libgfortran43

Installation Commands

After downloading the appropriate RPM package for RStudio Server Professional you should execute
the following command to complete the installation:

$ sudo zypper install <rstudio-server-package.rpm>

1.3 Management Script

RStudio Server management tasks are performed using the rstudio-server utility (installed under
/usr/sbin). This utility enables the stopping, starting, and restarting of the server, enumeration
and suspension of user sessions, taking the server offline, as well as the ability to hot upgrade a
running version of the server.

For example, to restart the server you can use the following command:

$ sudo rstudio-server restart

Note that on some systems (including RedHat/CentOS 5 and SLES 11) the sudo utility doesn’t
have the /usr/sbin directory in it’s path by default. For these systems you can use a full path to
the management script. For example:

$ sudo /usr/sbin/rstudio-server restart

https://cran.rstudio.com/bin/linux/suse/
https://cran.rstudio.com/bin/linux/suse/
https://www.suse.com/partners/isv/suse_linux_sdk_9.html

CHAPTER 1. GETTING STARTED 6

1.4 Activation

After completing the installation steps described in the previous section you may need to activate
the product before using it. Alternatively, if you haven’t previously installed RStudio Server on
a system then it will run in evaluation mode for a period of time before requiring activation. To
determine the current license status of your system you can use the following command:

$ sudo rstudio-server license-manager status

To activate the product you obtain a product key and then use the following commands:

$ sudo rstudio-server license-manager activate <product-key>
$ sudo rstudio-server restart

Note that you need to restart the server in order for licensing changes to take effect.

Additional details on license management (including discussions of offline activation and activating
through a proxy server) can be found in the License Management section.

1.5 Accessing the Server

1.5.1 Logging In

By default RStudio Server runs on port 8787 and accepts connections from all remote clients. After
installation you should therefore be able to navigate a web browser to the following address to
access the server:

http://<server-ip>:8787

RStudio will prompt for a username and password and will authenticate access using the PAM
authentication scheme configured for the server. Some notes related to user authentication:

• RStudio Server will not permit logins by system users (those with ids < 100).
• By default on Debian/Ubuntu the system default PAM profile (/etc/pam.d/other) will be

used (this can be customized by creating an RStudio PAM profile at /etc/pam.d/rstudio).
• By default on RedHat/CentOS and SLES an RStudio PAM profile (/etc/pam.d/rstudio)

that authenticates using the system username/password database will be used (this can be
customized by editing the profile as appropriate).

• User credentials are encrypted using RSA as they travel over the network.

Additional details on customizing RStudio Server authentication are provided in Authenticating
Users. Details on customizing the port and enabling SSL are covered in Access and Security.

CHAPTER 1. GETTING STARTED 7

1.5.2 Troubleshooting Problems

If you are unable to access the server after installation, you should run the verify-installation
command to output additional diagnostics:

$ sudo rstudio-server verify-installation

This command will start the server and run and connect to an R session. Note that this will test the
correct installation of RStudio Server and ensure that it can connect to a locally installed version of
R. However, it won’t test whether networking or authentication problems are preventing access to
the server.

If problems persist, you can also consult the system log to see if there are additional messages there.
On Debian/Ubuntu systems this will typically be located at:

/var/log/syslog

On RedHat/CentOS systems this will typically be located at:

/var/log/messages

Chapter 2

Server Management

2.1 Core Administrative Tasks

2.1.1 Configuration Files

RStudio Server uses several configuration files all located within the /etc/rstudio directory.
Configuration files include:

rserver.conf Core server settings
rsession.conf Settings related to individual R sessions
profiles User and group resource limits
r-versions Manual specification of additional versions of R
ip-rules IP access rules (allow or deny groups of IP addresses)
load-balancer Load balancing configuration
health-check Template for content to return for server health checks
google-accounts Mappings from Google accounts to local accounts
file-locks Configuration for file locking
login.html Custom HTML for login page

The rserver.conf and rsession.conf files are created by default during installation however the
other config files are optional so need to be created explicitly.

Whenever making changes to configuration files you need to restart the server for them to take
effect. You can do this using the restart command of the server management utility:

$ sudo rstudio-server restart

2.1.2 Stopping and Starting

During installation RStudio Server is automatically registered as a daemon which starts along with
the rest of the system. The exact nature of this will depend on the init system in use on your system: -
On systems using systemd (such as Debian 7, Ubuntu 15, and RedHat/CentOS 7), this registration is
performed as a systemd script at /etc/systemd/system/rstudio-server.service. - On systems

8

CHAPTER 2. SERVER MANAGEMENT 9

using Upstart (such as older versions of Debian and Ubuntu, and RedHat/CentOS 6), this registration
is performed using an Upstart script at /etc/init/rstudio-server.conf. - On systems using
init.d, including RedHat/CentOS 5, an init.d script is installed at /etc/init.d/rstudio-server.

To manually stop, start, and restart the server you use the following commands:

$ sudo rstudio-server stop
$ sudo rstudio-server start
$ sudo rstudio-server restart

To check the current stopped/started status of the server:

$ sudo rstudio-server status

2.1.3 Managing Active Sessions

There are a number of administrative commands which allow you to see what sessions are active
and request suspension of running sessions.

To list all currently active sessions:

$ sudo rstudio-server active-sessions

2.1.3.1 Suspending Sessions

When R sessions have been idle (no processing or user interaction) for a specified period of time
(2 hours by default) RStudio Server suspends them to disk to free up server resources. When the
user next interacts with their session it is restored from disk and the user resumes right back where
they left off. This is all done seamlessly such that users aren’t typically aware that a suspend and
resume has occurred.

To manually suspend an individual session:

$ sudo rstudio-server suspend-session <pid>

To manually suspend all running sessions:

$ sudo rstudio-server suspend-all

The suspend commands also have a “force” variation which will send an interrupt to the session to
request the termination of any running R command:

$ sudo rstudio-server force-suspend-session <pid>
$ sudo rstudio-server force-suspend-all

The force-suspend-all command should be issued immediately prior to any reboot so as to
preserve the data and state of active R sessions across the restart.

CHAPTER 2. SERVER MANAGEMENT 10

2.1.3.2 Killing Sessions

If you are for any reason unable to cooperatively suspend an R session using the commands described
above you may need to force kill the session. Force killing a session results in SIGKILL being sent
to the process, causing an immediate termination.

To force kill an individual session:

$ sudo rstudio-server kill-session <pid>

To force kill all running sessions:

$ sudo rstudio-server kill-all

Note that these commands should be exclusively reserved for situations where suspending doesn’t
work as force killing a session can cause user data loss (e.g. unsaved source files or R workspace
content).

2.1.4 Taking the Server Offline

If you need to perform system maintenance and want users to receive a friendly message indicating
the server is offline you can issue the following command:

$ sudo rstudio-server offline

When the server is once again available you should issue this command:

$ sudo rstudio-server online

2.1.5 Upgrading to a New Version

If you perform an upgrade of RStudio Server and an existing version of the server is currently
running, then the upgrade process will also ensure that active sessions are immediately migrated to
the new version. This includes the following behavior:

• Running R sessions are suspended so that future interactions with the server automatically
launch the updated R session binary

• Currently connected browser clients are notified that a new version is available and automati-
cally refresh themselves.

• The core server binary is restarted

To upgrade to a new version of RStudio Server you simply install the new version. For example on
Debian/Ubuntu:

CHAPTER 2. SERVER MANAGEMENT 11

$ sudo gdebi <rstudio-server-package.deb>

For RedHat/CentOS:

$ sudo yum install --nogpgcheck <rstudio-server-package.rpm>

For openSUSE / SLES:

$ sudo zypper install <rstudio-server-package.rpm>

2.2 Administrative Dashboard

RStudio Server includes an administrative dashboard with the following features:

1) Monitoring of active sessions and their CPU and memory utilization;
2) The ability to suspend, forcibly terminate, or assume control of any active session;
3) Historical usage data for individual server users (session time, memory, CPU, logs);
4) Historical server statistics (CPU, memory, active sessions, system load); and
5) Searchable server log (view all messages or just those for individual users)

The dashboard can be an invaluable tool in understanding server usage and capacity as well as to
diagnose and resolve problems.

2.2.1 Enabling the Dashboard

The administrative dashboard is accessed at the following URL:

http://<server-address>/admin

The administrative dashboard is disabled by default. To enable it you set the admin-enabled
option. You can also specify that only users of certain group have access to the dashboard using the
admin-group option. For example:

/etc/rstudio/rserver.conf

admin-enabled=1
admin-group=rstudio-admins

Note that changes to the configuration will not take effect until the server is restarted.

CHAPTER 2. SERVER MANAGEMENT 12

2.2.2 Administrator Superusers

You can further designate a certain user or group of users as administrative “superusers”. Superusers
have the following additional privileges:

1) Suspend or terminate active sessions
2) Assume control of active sessions (e.g. for troubleshooting)
3) Login to RStudio as any other server user

Administrative superusers do not have root privilege on the system, but rather have a narrow set
of delegated privileges that are useful in managing and supporting the server. You can define the
users with this privilege using the admin-superuser-group setting. For example:

/etc/rstudio/rserver.conf

admin-superuser-group=rstudio-superuser-admins

Changes to the configuration will not take effect until the server is restarted.

2.2.2.1 Google Accounts Restrictions

Note that the ability to login as other users and assume control of existing sessions is not available if
you are authenticating with Google Accounts. This is because Google authentication uses a different
user-identity mechanism which isn’t compatible with the way that user session impersonation is
implemented.

Chapter 3

Authenticating Users

3.1 PAM Authentication

RStudio Server Professional Edition authenticates users via the Linux standard PAM (Pluggable
Authentication Module) API. PAM is typically configured by default to authenticate against the
system user database (/etc/passwd) however it can also be configured to authenticate against a
wide variety of other systems including ActiveDirectory and LDAP.

The section describes the PAM configuration used for authentication by default after installation.
Note that PAM can be used for both authentication as well as to tailor the environment for user
sessions (PAM sessions). This section describes only authentication, see the [User Resources and
Limits] section for details on how RStudio Server can be configured to use PAM sessions.

3.1.1 PAM Basics

PAM profiles are are located in the /etc/pam.d directory. Each application can have their own
profile, and there is also a default profile used for applications without one (the default profile is
handled differently depending on which version of Linux you are running).

To learn more about PAM and the many options and modules available for it see the following:

• http://en.wikipedia.org/wiki/Pluggable_authentication_module
• http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-pam.html
• http://tldp.org/HOWTO/User-Authentication-HOWTO/x115.html
• http://linux.die.net/man/8/pam

3.1.2 Default PAM Configuration

Debian / Ubuntu

On Debian and Ubuntu systems RStudio Server does not provide an RStudio specific PAM con-
figuration file. As a result, RStudio Server uses the /etc/pam.d/other profile, which by default
inherits from a set of common configuration files:

/etc/pam.d/other

13

http://en.wikipedia.org/wiki/Pluggable_authentication_module
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-pam.html
http://tldp.org/HOWTO/User-Authentication-HOWTO/x115.html
http://linux.die.net/man/8/pam

CHAPTER 3. AUTHENTICATING USERS 14

@include common-auth
@include common-account
@include common-password
@include common-session

If the /etc/pam.d/other profile reflects the authentication system and policies that you’d like
RStudio Server to use then no further configuration is required. If you want to create a custom
PAM profile for RStudio you would create a file named /etc/pam.d/rstudio and specify whatever
settings are appropriate.

RedHat / CentOS / SUSE

On RedHat, CentOS and SUSE systems applications without their own PAM profiles are denied
access by default. Therefore to ensure that RStudio is running and available after installation a
default PAM profile is installed at /etc/pam.d/rstudio. This profile is configured to require a
user-id greater than 500 and to authenticate users against local system accounts:

/etc/pam.d/rstudio

auth requisite pam_succeed_if.so uid >= 500 quiet
auth required pam_unix.so nodelay
account required pam_unix.so

This default PAM profile may not reflect the authentication behavior that you want for RStudio
Server. In that case, some customization may be required. If you’ve already set up another PAM
profile (e.g. /etc/pam.d/login) with the desired behavior then it may be enough to simply copy
that profile over the RStudio one. For example:

$ sudo cp /etc/pam.d/login /etc/pam.d/rstudio

3.1.3 Diagnosing PAM Authentication Problems

If you are unable to login to RStudio Server there may be an underlying problem with the PAM
configuration. The best way to diagnose PAM configuration problems is to use the pamtester
utility (which is bundled with RStudio Server). Using pamtester enables you to test authentication
in an isolated environment as well as to see much more detailed diagnostics.

The pamtester utility is located at /usr/lib/rstudio-server/bin/pamtester. To invoke it you
pass several arguments indicating the PAM profile to test, the user to test for, and whether you
want verbose output. For example:

sudo /usr/lib/rstudio-server/bin/pamtester --verbose rstudio <username> authenticate

You can find more detailed documentation on using pamtester here: http://linux.die.net/man/1/
pamtester.

http://linux.die.net/man/1/pamtester
http://linux.die.net/man/1/pamtester

CHAPTER 3. AUTHENTICATING USERS 15

3.1.4 Managing PAM Login Lifetimes

When logging in using PAM authentication users have an option to stay signed in across browser
sessions. By default when choosing the stay signed in option users will remain signed in for 30 days.
You can modify this behavior using the auth-stay-signed-in-days setting. For example:

/etc/rstudio/rserver.conf

auth-stay-signed-in-days=7

You can entirely prevent this option from being shown by using the auth-stay-signed-in setting.
For example:

/etc/rstudio/rserver.conf

auth-stay-signed-in=0

Setting this option to 0 will result in users being prompted to log in each time they start a new
browser session (i.e. logins will only be valid as long as the browser process in which they originated
in remains running).

3.2 Restricting Access to Specific Users

3.2.1 Minimum User Id

By default RStudio Server only allows normal (as opposed to system) users to successfully authenti-
cate. The minimum user id is determined by reading the UID_MIN value from the /etc/login.defs
file. If the file doesn’t exist or UID_MIN isn’t defined within it then a default value of 1000 is used.

You change the minimum user id by specifying the auth-minimum-user-id option. For example:

/etc/rstudio/rserver.conf

auth-minimum-user-id=100

Note that it’s possible that your PAM configuration is also applying a constraint on user-ids (see
the Default PAM Configuration section above for an example). In this case you should ensure that
the auth-minimum-user-id is consistent with the value specified in your PAM configuration.

3.2.2 Restricting by Group

You can specify that only users of certain groups are allowed to access RStudio Server. To do this
you use the auth-required-user-group setting. For example:

/etc/rstudio/rserver.conf

CHAPTER 3. AUTHENTICATING USERS 16

auth-required-user-group=rstudio-users

You can specify a single group as the above example does or a comma-delimited list of groups. For
example:

/etc/rstudio/rserver.conf

auth-required-user-group=analysts,admins,rstudio-users

Note that this change will not take effect until the server is restarted.

3.2.2.1 Creating and Managing Group Membership

To create a new group you use the groupadd command:

$ sudo groupadd <groupname>

To add a user to an existing group you use the usermod command:

$ sudo usermod -a -G <groupname> <username>

Note that it’s critical that you include the -a flag as that indicates that the group should be added
to the user rather than replace the user’s group list in it’s entirety.

3.3 Google Accounts

RStudio Server can be configured to authenticate users via Google Accounts. This enables users to
login with their existing Gmail or Google Apps credentials and to be automatically authenticated
to RStudio Server whenever they are already logged into their Google account.

3.3.1 Registering with Google

In order to use Google Accounts with RStudio Server you need to register your server with Google
for OAuth 2.0 Authentication. You do this by creating a new “Project” for your server in the Google
Developer Console:

https://console.developers.google.com/

Once you’ve created a project you go to the Credentials area of APIs and auth and choose to
Create New Client ID:

You’ll then be presented with a dialog used to create a new client ID:

You should select “Web application” as the application type and provide two URLs that correspond
to the server you are deploying on. The screenshot above uses https://www.example.com as the
host, you should substitute your own domain and port (if not using a standard one like 80 or 443)
in your configuration.

https://console.developers.google.com/

CHAPTER 3. AUTHENTICATING USERS 17

Figure 3.1: Create Client Id

This will result in two values which you’ll need to provide as part of the RStudio Server configuration:
client-id and client-secret (they’ll be displayed in the Google Developer Console after you
complete the dialog).

3.3.2 Enabling Google Accounts

To enable authentication with Google Accounts you add the auth-google-accounts option to the
RStudio Server configuration file:
/etc/rstudio/rserver.conf

auth-google-accounts=1

In addition, you need to add a configuration file (/etc/rstudio/google-client-secret) containing
the client-id and client-secret that you received when registering your site with Google. For
example, the configuration file might look like this:
/etc/rstudio/google-client-secret

client-id=lllllllllllll-xxxxxxxxxxxxxxxxxxxxxx.apps.googleusercontent.com
client-secret=BhCC6rK7Sj2ZtPH0ord7lO1w

The /etc/rstudio/google-client-secret file should have user read/write file permissions
(i.e. 0600) to protect it’s contents from other users. You can ensure this as follows:

CHAPTER 3. AUTHENTICATING USERS 18

Figure 3.2: Create Client Id

CHAPTER 3. AUTHENTICATING USERS 19

$ sudo chmod 0600 /etc/rstudio/google-client-secret

Note that the above client-id and client-secret aren’t the actual values you’ll use. Rather, you
should substitute the values that you obtained from Google when registering your site for OAuth
authentication.
Once you enable authentication with Google Accounts that becomes the exclusive means of authen-
tication (you can’t concurrently use both PAM and Google Account authentication).

3.3.3 Translating to Local Accounts

3.3.3.1 Creating Matching Accounts

Once a user is authenticated via Google Accounts it’s necessary to map their Google Accounts
identity to a local system account. The default and most straightforward way to do this is to create
a local account with a username identical to their Google email address.
If you choose to create local accounts that match Google email addresses be sure to use only lowercase
characters in the account name, since Google email addresses are transformed to lower-case prior to
matching them to local account names.
One problem with creating local accounts that match Google email addresses is that they often contain
characters that are invalid by default within Linux usernames (e.g. @ or .). On Debian/Ubuntu
systems it’s possible to force the system to create a user with these characters. Here’s an example
of creating a user with a username that contains typically invalid characters:

$ sudo adduser --force-badname <username>

Note that the --force-badname option is only available on Debian/Ubuntu systems and is not
available on RedHat/CentOS or SLES systems.
If the users you are creating will only be accessing the server via RStudio, you may also want to
disable their ability to login as a normal interactive user and to specify that they have no password.
For example:

$ sudo adduser --force-badname --disabled-login --disabled-password <username>

3.3.3.2 Using an Account Mappings File

Alternatively, you map create local accounts that do not match Google email addresses and then
specify a mapping of Google accounts to local accounts via the /etc/rstudio/google-accounts
configuration file. For example:
/etc/rstudio/google-accounts

john.smith@gmail.com=jsmith
sally.jones@gmail.com=sjones

Note that changes to the google-accounts configuration file take effect immediately and do not
require a server restart.

CHAPTER 3. AUTHENTICATING USERS 20

3.4 Customizing the Sign-In Page

You can customize the content and appearance of the RStudio Server sign-in page by including
custom HTML within the page. This is accomplished by either:

1. Providing a file at /etc/rstudio/login.html that includes additional HTML to include
within the login page; or

2. Specifying the auth-login-page-html option within the rserver.conf config file which
points to an alternate location for the login HTML file. For example, the following specifies
that the file located at /opt/config/rstudio-login.html should be included within the
login page:
/etc/rstudio/rserver.conf

auth-login-page-html=/opt/config/rstudio-login.html

The contents of the specified HTML file will be included after the standard login header and login
username/password form. If you want to modify the appearance of the header and/or add content
above the username/password form you can use CSS and JavaScript within your login.html file to
modify the page after it loads.

3.5 Proxied Authentication

You can configure RStudio Server to participate in an existing web-based single-sign-on authentication
scheme using proxied authentication. In this configuration all traffic to RStudio Server is handled
by a proxy server which also handles user authentication.

In this configuration the proxy server adds a special HTTP header to requests to RStudio Server
letting it know which authenticated user is making the request. RStudio Server trusts this header,
launching and directing traffic to an R session owned by the specified user.

3.5.1 Enabling Proxied Authentication

To enable proxied authentication you need to specify both the auth-proxy and auth-proxy-sign-in-url
settings (the sign-in URL is the absolute URL to the page that users should be redirected to for
sign-in). For example:

/etc/rstudio/rserver.conf

auth-proxy=1
auth-proxy-sign-in-url=http://example.com/sign-in

Note that changes to the configuration will not take effect until the server is restarted.

CHAPTER 3. AUTHENTICATING USERS 21

3.5.2 Implementing the Proxy

3.5.2.1 Sign In URL

The sign in URL should host a page where the user specifies their credentials (this might be for
example the main page for an existing web-based authentication system). After collecting and
authorizing the credentials the sign in URL should then redirect back to the URL hosting the
RStudio Server.
RStudio will redirect to the sign in URL under the following conditions:

1. Whenever an HTTP request that lacks the username header is received by the server; and

2. When the user clicks the “Sign out” button in the RStudio IDE user interface.

You should be sure in setting up the proxy server that traffic bound for the sign-in URL is excluded
from forwarding to RStudio Server (otherwise it will end up in an infinite redirect loop).

3.5.2.2 Forwarding the Username

When proxying pre-authenticated traffic to RStudio Server you need to include a special HTTP
header (by default X-RStudio-Username) with each request indicating which user the request is
associated with. For example:

X-RStudio-Username: jsmith

It’s also possible to specify both a system username and a display username (in the case where
system accounts are dynamically provisioned and don’t convey actual user identity). For example:

X-RStudio-Username: rsuser24/jsmith

Note that is highly recommended that you do not use the default X-RStudio-Username header
name. The reasons for this are described in the section on security considerations immediately
below.

3.5.2.3 Rewriting Usernames

It may be that the proxy system you are using sends the username in a format that doesn’t match that
of users on the system, however can be easily transformed to one that does (e.g. it has a standard prefix
before the username). If this is the case you can specify the auth-proxy-user-header-rewrite
option to provide a re-write rule for the inbound header. For example, the following rule strips the
prefix “UID-” from a username header:

auth-proxy-user-header-rewrite=^UID-([a-z]+)$ $1

The format of a re-write rule is a regular expression followed by a space and then a replacement
string. The replacement string can reference captured parts of the regular expression using $1, $2,
etc.

CHAPTER 3. AUTHENTICATING USERS 22

3.5.3 Security Considerations

3.5.3.1 Keeping the Header Name Secret

Using the the default header name X-RStudio-Username creates a security problem: code running
behind the proxy (i.e. code within R sessions) could form requests back to the server which
impersonate other users (by simply inserting the header in their request).
To prevent this issue you can specify a custom header name which is kept secret from end users.
This is done by creating a special configuration file (/etc/rstudio/secure-proxy-user-header)
that contains the name of the header, and then setting it’s file permissions so that it’s not readable
by normal users. For example:

sudo sh -c "echo 'X-Secret-User-Header' > /etc/rstudio/secure-proxy-user-header"
sudo chmod 0600 /etc/rstudio/secure-proxy-user-header

3.5.3.2 Preventing Remote Use of the Header

When implementing the proxy it’s important to remember that RStudio Server will always trust
the username header to authenticate users. It’s therefore critical from the standpoint of security
that all requests originating from the proxy have this header set explicitly by the proxy (as opposed
to allowing the header to be specified by a remote client).

3.5.4 Troubleshooting with Access Logs

If you want to see exactly which requests RStudio Server is receiving and whether they include
the expected username information, you can temporarily enable server access logs using the
server-access-log setting as follows:
/etc/rstudio/rserver.conf

server-access-log=1

After restarting RStudio Server the following file will contain a record of each HTTP request made
to the server along with it’s HTTP response code:

/var/log/rstudio-server/rserver-http-access.log

The log file will contain entries that look like this:

127.0.0.1 - - [29/Jun/2015:06:30:41 -0400] "GET /s/f01ddf8222bea98a/ HTTP/1.1"
200 91 "http://localhost:8787/s/f01ddf8222bea98a/" "Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.125 Safari/537.36" "jsmith"

Note that the very last item in the log file entry is "jsmith". This is the username that RStudio
Server read from the header passed by the proxy server. If this shows up as blank ("-") then your
proxy server isn’t forwarding the header or using the correct header name in forwarding.

CHAPTER 3. AUTHENTICATING USERS 23

Important Note: Once you’ve concluded troubleshooting it’s important that you remove the
server-access-log=1 option from the /etc/rstudio/rserver.conf file (since this log file is not
rotated it will eventually consume a large amount of disk space if you don’t remove the option).

Chapter 4

Access and Security

4.1 Network Port and Address

After initial installation RStudio accepts connections on port 8787. If you wish to listen on a
different another port you can modify the www-port option. For example:

/etc/rstudio/rserver.conf

www-port=80

By default RStudio binds to address 0.0.0.0 (accepting connections from any remote IP). You can
modify this behavior using the www-address option. For example:

/etc/rstudio/rserver.conf

www-address=127.0.0.1

Note that changes to the configuration will not take effect until the server is restarted.

4.2 IP Access Rules

RStudio Server can be configured to deny access to specific IP addresses or ranges of addresses.
Access rules are defined in the configuration file /etc/rstudio/ip-rules

Access rules are established using the allow and deny directives and are processed in order, with
the first matching rule governing whether a given address is allowed or denied. For example, to
allow only clients within the 192.168.1.0/24 subnet but also deny access to 192.168.1.10 you
would use these rules:

/etc/rstudio/ip-rules

deny 192.168.1.10
allow 192.168.1.0/24
deny all

24

CHAPTER 4. ACCESS AND SECURITY 25

All clients outside of the specified subset are denied access because of the deny all rule at the end
of the configuration.

Note that changes to the configuration will not take effect until the server is restarted.

4.3 Frame Origin

For security reasons, RStudio Server will not load inside a browser frame (such as a frameset or
IFrame) by default. You can modify this behavior by using the www-frame-origin option. For
example, if you would like to host RStudio inside a browser frame at example.com, you can tell
RStudio to allow this as follows:

/etc/rstudio/rserver.conf

www-frame-origin=example.com

There are several special values available for the www-frame-origin option:

Value Meaning
none The default; do not allow RStudio to load in any frame.
same Allow RStudio to load in a frame if it has the same origin (host

and port) as RStudio.
any Allow RStudio to load in a frame from any origin (not

recommended)
my-domain.com Allow RStudio to load in a frame at my-domain.com

4.4 Secure Sockets (SSL)

4.4.1 SSL Configuration

If your RStudio Server is running on a public network then configuring it to use SSL (Secure Sockets
Layer) encryption is strongly recommended. You can do this via the ssl-enabled setting along
with related settings that specify the location of your SSL certificate and key. For example:

/etc/rstudio/rserver.conf

ssl-enabled=1
ssl-certificate=/var/certs/your_domain_name.crt
ssl-certificate-key=/var/certs/your_domain_name.key

It’s important when installing the certificate (.crt) file that you concatenate together any intermediate
certificates (i.e. the generic one from your certificate authority) with the certificate associated with
your domain name. For example you could use a shell command of this form to concatenate the CA
intermediate certificate to your domain name’s certificate:

CHAPTER 4. ACCESS AND SECURITY 26

$ cat certificate-authority.crt >> your_domain_name.crt

The resulting file should then be specified in the ssl-certificate option.

It’s also important to ensure that the file permissions on your SSL certificate key are as restrictive
as possible so it can’t be read by ordinary users. The file should typically be owned by the root
user and be set as owner readable and writeable. For example:

$ sudo chmod 600 /var/certs/your_domain_name.key

4.4.2 SSL Protocols

By default RStudio Server supports the TLSv1, TLSv1.1, and TLSv1.2 protocols for SSL. The list
of supported protocols can configured via the ssl-protocols option. For example, to use only the
TLSv1.1 and TLSv1.2 protocols you would use:

/etc/rstudio/rserver.conf

ssl-protocols=TLSv1.1 TLSv1.2

The list of supported protocols is space delimted (as illustrated above). Valid protocol values are:
SSLv2, SSLv3, TLSv1, TLSv1.1, and TLSv1.2.

4.4.3 SSL Ports

When RStudio Server is configured to use SSL the default behavior with respect to ports is:

1) SSL is bound to port 443 (enabling access using the standard https protocol within the
browser)

2) The server also listens on port 80 and redirects all requests to port 443 (allowing users to
specify the domain without the https protocol and be automatically redirected to the secure
port)

However, if SSL is bound to another port (using the www-port option) then the automatic redirect
behavior is not enabled. It’s also possible to disable automatic SSL redirects entirely using the
ssl-redirect-http option as follows:

/etc/rstudio/rserver.conf

ssl-redirect-http=0

Note that changes to the configuration will not take effect until the server is restarted.

CHAPTER 4. ACCESS AND SECURITY 27

4.5 Server Permissions

4.5.1 Server Account

RStudio Server runs as the system root user during startup and then drops this privilege and runs
as a more restricted user. RStudio Server then re-assumes root privilege for a brief instant when
creating R sessions on behalf of users (the server needs to call setresuid when creating the R
session, and this call requires root privilege).

The user account that RStudio Server runs under in the normal course of operations is
rstudio-server. This account is automatically added to the system during installation and is
created as a system rather than end user account (i.e. the --system flag is passed to useradd).

4.5.1.1 Alternate Server Account

You can configure RStudio Server so that it will run from an alternate account with the following
steps:

1. Recursively delete the /var/log/rstudio-server and /var/lib/rstudio-server directories
(they contain files and directories owned by the default rstudio server user)

2. Create a new system user (if the one you want to use doesn’t already exist)
3. Assign this user to the server-user option in the /etc/rstudio/rserver.conf configuration

file (see example below)
4. Restart RStudio Server

Note that the removal of the /var/*/rstudio-server directories will reset any already stored
metrics and log files.

For example, to shutdown the server, cleanup files owned by the previous rstudio user, and create a
new system user named rs-user you’d use the following commands:

sudo rstudio-server stop
sudo rm -rf /var/log/rstudio-server
sudo rm -rf /var/log/rstudio-server
sudo useradd --system rs-user

Then’d edit the /etc/rstudio/rserver.conf configuration file as follows:

/etc/rstudio/rserver.conf

server-user=rs-user

Finally, restart RStudio Server to begin running under the new user:

sudo rstudio-server start

CHAPTER 4. ACCESS AND SECURITY 28

4.5.2 AppArmor

On Debian and Ubuntu systems the RStudio Server process runs under an AppArmor profile (you
can find more information about AppArmor here: http://en.wikipedia.org/wiki/AppArmor).

If AppArmor is causing problems in your configuration you can disable it using the
server-app-armor-enabled option. For example:

/etc/rstudio/rserver.conf

server-app-armor-enabled=0

Note that there aren’t known scenarios where the RStudio Server AppArmor profile causes problems
so it’s unlikely that you’ll ever need to modify this setting. Note also that this setting will not take
effect until the server is restarted.

4.6 Running with a Proxy

4.6.1 Overview

If you are running RStudio Server behind a proxy server you need be sure to configure the proxy
server so that it correctly handles all traffic to and from RStudio Server. Beyond the normal
reverse proxy configuration you’d apply for any HTTP server application, you also need to to
ensure that websockets are forwarded correctly between the proxy server and RStudio Server so that
Shiny applications run from within the IDE work properly. This section describes how to correctly
configure a reverse proxy with Nginx and Apache.

4.6.2 Nginx Configuration

On Debian or Ubuntu a version of Nginx that supports reverse-proxying can be installed using the
following command:

sudo apt-get install nginx

On CentOS or Red Hat you can install Nginx using the following command:

sudo yum install nginx

To enable an instance of Nginx running on the same server to act as a front-end proxy to RStudio
Server you would add commands like the following to your nginx.conf file. Note that you must
add code to proxy websockets in order to correctly display Shiny apps and R Markdown Shiny
documents in RStudio Server. Also note that if you are proxying to a server on a different machine
you need to replace references to localhost with the correct address of the server where you are
hosting RStudio.

http://en.wikipedia.org/wiki/AppArmor
http://nginx.org/en/
http://httpd.apache.org/

CHAPTER 4. ACCESS AND SECURITY 29

http {

map $http_upgrade $connection_upgrade {
default upgrade;
'' close;

}

server {
listen 80;

location / {
proxy_pass http://localhost:8787;
proxy_redirect http://localhost:8787/ $scheme://$host/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 20d;

}
}

}

If you want to serve RStudio Server from a custom path (e.g. /rstudio) you would edit your
nginx.conf file as shown below:

http {

map $http_upgrade $connection_upgrade {
default upgrade;
'' close;

}

server {
listen 80;

location /rstudio/ {
rewrite ^/rstudio/(.*)$ /$1 break;
proxy_pass http://localhost:8787;
proxy_redirect http://localhost:8787/ $scheme://$host/rstudio/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_read_timeout 20d;

}

After adding these entries you’ll then need to restart Nginx so that the proxy settings take effect:

CHAPTER 4. ACCESS AND SECURITY 30

sudo /etc/init.d/nginx restart

4.6.3 Apache Configuration

To enable an instance of Apache running on the same server to act as a front-end proxy to
RStudio Server you need to use the mod_proxy and mod_proxy_wstunnel modules. The steps for
enabling this module vary across operating systems so you should consult your distribution’s Apache
documentation for details.

On Debian and Ubuntu systems Apache can be installed with mod_proxy using the following
commands:

sudo apt-get install apache2
sudo apt-get install libapache2-mod-proxy-html
sudo apt-get install libxml2-dev

Then, to update the Apache configuration files to activate mod_proxy you execute the following
commands:

sudo a2enmod proxy
sudo a2enmod proxy_http
sudo a2enmod proxy_wstunnel

On CentOS and RedHat systems Apache can be installed with mod_proxy and mod_proxy_wstunnel
by following the instructions here:

http://httpd.apache.org/docs/2.4/platform/rpm.html

By default with Apache 2.4, mod_proxy and mod_proxy_wstunnel should be enabled. You can
check this by opening the file /etc/httpd/conf.modules.d/00-proxy.conf and making sure the
following lines are included and not commented out:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_wstunnel_module modules/mod_proxy_wstunnel.so

Once you have enabled mod_proxy and mod_proxy_wstunnel in your Apache installation you need
to add the required proxy commands to your VirtualHost definition. Note that you will also
need to include code to correctly proxy websockets in order to correctly proxy Shiny apps and R
Markdown documents within RStudio Server. Also note that if you are proxying to a server on
a different machine you need to replace references to localhost with the correct address of the
server where you are hosting RStudio.

<VirtualHost *:80>

<Proxy *>
Allow from localhost

</Proxy>

http://httpd.apache.org/docs/2.4/platform/rpm.html

CHAPTER 4. ACCESS AND SECURITY 31

RewriteEngine on
RewriteCond %{HTTP:Upgrade} =websocket
RewriteRule /(.*) ws://localhost:8787/$1 [P,L]
RewriteCond %{HTTP:Upgrade} !=websocket
RewriteRule /(.*) http://localhost:8787/$1 [P,L]
ProxyPass / http://localhost:8787/
ProxyPassReverse / http://localhost:8787/
ProxyRequests Off

</VirtualHost>

Note that if you want to serve RStudio from a custom path (e.g. /rstudio) you would replace the
directives described above to:

RewriteEngine on
RewriteCond %{HTTP:Upgrade} =websocket
RewriteRule /rstudio/(.*) ws://localhost:8787/$1 [P,L]
RewriteCond %{HTTP:Upgrade} !=websocket
RewriteRule /rstudio/(.*) http://localhost:8787/$1 [P,L]
ProxyPass /rstudio/ http://localhost:8787/
ProxyPassReverse /rstudio/ http://localhost:8787/
ProxyRequests Off

Finally, after you’ve completed all of the above steps you’ll then need to restart Apache so that the
proxy settings take effect:

sudo /etc/init.d/apache2 restart

4.6.4 RStudio Configuration

If your RStudio Server and proxy server are running on the same machine you can also change the
port RStudio Server listens on from 0.0.0.0 (all remote clients) to 127.0.0.1 (only the localhost).
This ensures that the only way to connect to RStudio Server is through the proxy server. You can
do this by adding the www-address entry to the /etc/rstudio/rserver.conf file as follows:

www-address=127.0.0.1

Note that you may need to create this config file if it doesn’t already exist.

Chapter 5

R Sessions

5.1 R Executable and Libraries

5.1.1 Locating R

RStudio Server uses the version of R pointed to by the output of the following command:

$ which R

The which command performs a search for the R executable using the system PATH. RStudio will
therefore by default bind to the same version that is run when R is executed from a terminal.

For versions of R installed by system package managers this will be /usr/lib/R. For versions of R
installed from source this will typically (but not always) be /usr/local/lib/R.

If you want to override which version of R is used then you can use the rsession-which-r setting.
For example:

/etc/rstudio/rserver.conf

rsession-which-r=/usr/local/bin/R

Note that this change will not take effect until the server is restarted.

5.1.1.1 Using Multiple Versions of R

The section above describes how RStudio Server locates the global default version of R. It’s also
possible to specify alternate versions of R either by user or by group. The R Versions section
describes this in more detail.

5.1.2 Locating Shared Libraries

You can add elements to the default LD_LIBRARY_PATH for R sessions (as determined by the R
ldpaths script) by adding an rsession-ld-library-path entry to the server config file. This

32

CHAPTER 5. R SESSIONS 33

might be useful for ensuring that packages can locate external library dependencies that aren’t
installed in the system standard library paths. For example:

/etc/rstudio/rserver.conf

rsession-ld-library-path=/opt/someapp/lib:/opt/anotherapp/lib

Note that this change will not take effect until the server is restarted.

5.1.3 Customizing Session Launches

5.1.3.1 Profile Script Execution

RStudio Server launches R sessions under a bash login shell. This means that prior to the execution
of the R session the bash shell will read and execute commands from this file if it exists:

/etc/profile

After reading that file, it looks for the following files and reads and executes commands from the
first one that exists and is readable (it’s important to note that only one of these files will be read
and executed):

~/.bash_profile
~/.bash_login
~/.profile

If you have further RStudio specific initialization logic (exporting environment variables, etc.) you
can optionally create an R session specific profile script at:

/etc/rstudio/rsession-profile

If it exists this script will be executed prior to the bash shell that launches the R session.

5.1.3.2 Environment Variables

R sessions inherit environment variables that are explicitly exported from the profile scripts described
above. It’s also possible to append paths to the LD_LIBRARY_PATH environment variable using the
rsession-ld-library-path option (see previous section for details).

Another source of environment variables are PAM sessions. On Debian/Ubuntu systems, the
default PAM profile run by RStudio Server includes the environment variables defined in
/etc/security/pam_env.conf and /etc/environment. To learn more about setting environment
variables with PAM you should consult the PAM Sessions section as well as the documentation on
the pam_env module here: http://linux.die.net/man/8/pam_env.

http://linux.die.net/man/8/pam_env

CHAPTER 5. R SESSIONS 34

5.1.3.3 Program Supervisors

You may also wish to run R sessions under a program supervisor that modifies their environment or
available resources. You can specify a supervisor (and the arguments which control it’s behavior)
using the rsession-exec-command setting. For example:

/etc/rstudio/rserver.conf

rsession-exec-command=nice -n 10

This example uses the nice command to run all R sessions with a lower scheduling priority. See
http://linux.die.net/man/1/nice for more details on nice. Note that for nice in particular it’s
possible to accomplish the same thing using user and group profiles (and even specify a custom
priority level per user or group). See the User and Group Profiles section for more details.

5.2 User and Group Profiles

User and Group Profiles enable you to tailor the behavior of R sessions on a per-user or per-group
basis. The following attributes of a session can be configured within a profile:

1) Version of R used
2) CPU affinity (i.e. which set of cores the session should be bound to)
3) Scheduling priority (i.e. nice value)
4) Resource limits (maximum memory, processes, open files, etc.)
5) R session timeouts (amount of idle time which triggers session suspend)

5.2.1 Creating Profiles

Profiles are defined within the file /etc/rstudio/profiles. Note that this file is not created by
default so you’ll need to create it if doesn’t already exist. Profiles are divided into sections of three
different type:

1) Global ([*])

2) Per-group ([@groupname])

3) Per-user ([username])

Here’s an example profiles file that illustrates each of these types:

/etc/rstudio/profiles

[*]
cpu-affinity = 1-4
max-processes = 100
max-memory-mb = 2048
session-timeout-minutes=60

http://linux.die.net/man/1/nice

CHAPTER 5. R SESSIONS 35

[@powerusers]
cpu-affinity = 5-16
nice = -10
max-memory-mb = 4096

[jsmith]
r-version = /opt/R/3.1.0
session-timeout-minutes=360

This configuration specifies that by default users will run on cores 1 to 4 with a limit of 100 processes
and 2GB of virtual memory. It also specifies that members of the powerusers group will run on
cores 5 to 16 with an elevated nice priority and a limit of 4GB of memory. Finally, the user jsmith
is configured to use a different version of R from the system default.

Note that the /etc/rstudio/profiles file is processed from top to bottom (i.e. settings matching
the current user that occur later in the file always override ones that appeared prior). The settings
available within /etc/rstudio/profiles are described in more depth below.

5.2.2 Session Timeout

To configure the amount of idle time to wait before suspending sessions you can use the
session-timeout-minutes option. For example:

session-timeout-minutes=360

The default value if none is explicitly specified is 120 minutes.

There are some conditions where an R session will not be suspended, these include:

1) When a top-level R computation is running
2) When the R prompt is not in it’s default state (e.g. during a debugging session)

You can also specify that R sessions should never be suspended by setting the session-timeout-minutes
to zero. For example:

session-timeout-minutes=0

5.2.3 CPU Affinity and Scheduling Priority

If you have users or groups that consistently require more compute resources than others you can use
profile settings to reserve CPUs (cpu-affinity) as well as raise overall scheduling priority (nice).

CHAPTER 5. R SESSIONS 36

5.2.3.1 CPU Affinity

The cpu-affinity setting specifies which cores on a multi-core system should be used to schedule
work for a session. This is specified as a comma-separated list of core numbers (1-based) where
both individual cores and ranges of cores can be specified. For example:

cpu-affinity = 1,2,3,4
cpu-affinity = 1-4
cpu-affinity = 1,2,15-16

To determine the number of addressable cores on your system you can use the nproc command:

$ nproc

5.2.3.2 Scheduling Priority

The nice setting specifies a relative priority for scheduling session CPU time. Negative 20 is the
highest nice priority and positive 20 is the lowest priority. The system default niceness for processes
is typically 0. The following are all valid nice values:

nice = -10
nice = 0
nice = 15

Scheduler behavior around nice priorities varies by system. For more details see nice use and effect.

5.2.4 Resource Limits

Profiles can also be used to specify limits on available memory as well as the maximum number of
processes and open files.

5.2.4.1 Available Memory

The max-memory-mb setting controls the maximum amount of addressable memory for R sessions
(by default memory is unlimited). This example specifies a limit of 2GB:

max-memory-mb = 2048

Note that this value sets the amount of virtual memory that can be used by a process. Virtual
memory includes code (i.e. shared libraries) loaded by the process as well as things like memory
mapped files, so can often consume several hundred megabytes even for a vanilla R session. Therefore,
you want to be sure not to set this threshold too low (in no case should you set it below 1024).

http://en.wikipedia.org/wiki/Nice_(Unix)#Use_and_effect

CHAPTER 5. R SESSIONS 37

5.2.4.2 Number of Processes

The max-processes settings controls the maximum number of processes createable by a user. This
setting is useful to prevent either inadvertent or malicious fork bombs. The following example sets
a limit of 200 processes:

max-processes = 200

Note that users need to be able to create a minimum number of processes in order to use RStudio
Server so we don’t recommend setting this value below 25.

5.2.4.3 Number of Open Files

In most Linux environments there is a maximum of 1024 open files per process. This is typically
more than enough, but if you have a particular applications that requires more open files the
max-open-files setting can be used to increase the limit. For example:

max-open-files = 2048

5.2.5 Using Multiple Versions of R

As illustrated above, you can bind users or groups to distinct versions of R installed on your server.
This is controlled by the r-version option. Here are several examples of it’s use:

r-version = /usr/lib/R
r-version = /usr/local/lib/R
r-version = /opt/R/3.1.0
r-version = /opt/R/3.2.0

Note that r-version specifies the full path to the directory where R is installed.
See the R Versions chapter for additional details on running multiple versions of R on a single server.

5.3 Multiple R Sessions

RStudio Server Professional enables users to have multiple concurrent R sessions on a single server
or load balanced cluster of servers (the open-source version of RStudio Server supports only a single
session at a time).

5.3.1 Creating New Sessions

You can start a new R Session using the New Session command from the Session menu (or the
corresponding toolbar button near the top-right of the IDE).
You can also open an existing RStudio project in a new R session by using the Open Project in
New Session command. When switching projects there is also a button on the right side of the

http://en.wikipedia.org/wiki/Fork_bomb

CHAPTER 5. R SESSIONS 38

projects menu that lets you specify that the project should be opened in a new session rather than
within the current one.

You can review all currently running sessions and switch between them using the Sessions toolbar
near the top-right of the IDE.

5.3.2 Session Lifetimes

R Sessions are long-running tasks that continue to be available until you explicitly quit them (you
can think of them as you’d think of multiple top-level RStudio windows running on the desktop).
This means that you can kickoff a long running job in one session and then switch to another session,
revisiting the original session later to check on it’s progress. As is also possible on the desktop, you
can navigate between different projects and working directories within a session.

Sessions will suspend automatically when they are idle and then be automatically resumed next
time they are accessed. To permanently quit a session you can use the Quit Session command
located on the File menu or the corresponding toolbar button at the top right of the IDE.

5.3.3 Disabling Multiple Sessions

If you wish disable support for multiple sessions you can use the server-multiple-sessions option.
For example:

/etc/rstudio/rserver.conf

server-multiple-sessions=0

5.4 PAM Sessions

RStudio Server Professional uses PAM (Pluggable Authentication Modules) for both user authentica-
tion as well to establish the environment and resources available for R sessions. This is accomplished
using the PAM session API. PAM sessions are used for a variety of purposes:

1. To initialize environment variables
2. To automatically create local users after authentication against a directory server.
3. To mount remote drives
4. To initialize and destroy Kerberos tickets

This section explains how to configure and customize PAM sessions with RStudio Server.

5.4.1 Session PAM Profile

For PAM authentication RStudio Server uses the either the /etc/pam.d/other profile (De-
bian/Ubuntu) or /etc/pam.d/rstudio profile (RedHat/CentOS). However, for launching R sessions
a different PAM profile is used. This is because the launching of R sessions may not coincide with
authentication (e.g. returning to the site with login credentials cached in a cookie or resuming a

CHAPTER 5. R SESSIONS 39

suspended session). Therefore, the PAM directive that enables authentication with root privilege
only (auth sufficient pam_rootok.so) needs to be present in the PAM profile.
The behavior that RStudio Server requires is essentially same as that of the su command (imperson-
ation of a user without a password). Therefore by default RStudio Server uses the /etc/pam.d/su
profile for running R sessions.

5.4.1.1 Creating a Custom Profile

The /etc/pam.d/su profile has different default behavior depending upon your version of Linux
and local configuration. Depending upon what type of behavior you want associated with R sessions
(e.g. mounting of disks, setting of environment variables, enforcing of resource limits, etc.) you’ll
likely want to create a custom profile for R sessions. For example, if you wanted to use a profile
named rstudio-session you would add this to the configuration file:
/etc/rstudio/rserver.conf

auth-pam-sessions-profile=rstudio-session

Here is in turn what the custom profile might contain in order to enable a few common features of
PAM sessions (this is based on a modified version of the default su profile on Ubuntu):
/etc/pam.d/rstudio-session

This allows root to su without passwords (this is required)
auth sufficient pam_rootok.so

This module parses environment configuration file(s)
and also allows you to use an extended config
file /etc/security/pam_env.conf.
parsing /etc/environment needs "readenv=1"
session required pam_env.so readenv=1

Locale variables are also kept into /etc/default/locale in etch
reading this file *in addition to /etc/environment* does not hurt
session required pam_env.so readenv=1 envfile=/etc/default/locale

Enforces user limits defined in /etc/security/limits.conf
session required pam_limits.so

The standard Unix authentication modules
@include common-auth
@include common-account
@include common-session

5.4.1.2 Custom Profile with Passwords

Note that in the above configuration we rely on pam_rootok.so to enable authentication without a
password. This is necessary because RStudio Server doesn’t retain the passwords used during the

CHAPTER 5. R SESSIONS 40

authentication phase.

In some situations however passwords are important for more than just authentication. PAM profiles
support a use_first_pass directive to forward passwords used during authentication into other
modules (for example, to request a Kerberos ticket with pam_krb5.so or to mount an encrypted or
remote drive with pam_mount.so). For these scenarios RStudio Server supports an optional mode
to retain passwords after login and then forward them into the PAM session profile. This is enabled
via the auth-pam-sessions-use-password setting:

/etc/rstudio/rserver.conf

auth-pam-sessions-use-password=1

In this scenario you should remove the auth sufficient pam_rootok.so directive and replace
it with whatever authentication directives apply in your environment. You can then employ the
use_first_pass directive to forward the password as necessary to other modules.

For example, here’s a very simple RedHat/CentOS PAM configuration file that uses system default
authentication and forwards the password into the pam_mount.so module. Note that we are no
longer using pam_rootok.so because the password is now available when the session is created.

/etc/pam.d/rstudio-session

Auth/account (use system auth and forward password to pam_mount)
auth include system-auth
auth optional pam_mount.so use_first_pass
account required pam_unix.so

Session (read environment variables and enforce limits)
session required pam_env.so readenv=1
session required pam_env.so readenv=1 envfile=/etc/default/locale
session required pam_limits.so

Note that this configuration requires that RStudio Server retain user passwords in memory. This
retention is done using industry best-practices for securing sensitive in-memory data including
disabling ptrace and core dumps, using mlock to prevent paging into the swap area, and overwriting
the contents of memory prior to freeing it.

5.4.1.3 More Resources

If you want to learn more about PAM profile configuration the following are good resources:

• http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
• http://linux.die.net/man/8/pam.d
• http://www.linuxjournal.com/article/2120
• http://www.informit.com/articles/article.aspx?p=20968

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://linux.die.net/man/8/pam.d
http://www.linuxjournal.com/article/2120
http://www.informit.com/articles/article.aspx?p=20968

CHAPTER 5. R SESSIONS 41

5.4.2 PAM Session Cleanup

By default, RStudio Server does not close PAM sessions when their associated R process exits. This
is because PAM sessions often initialize and maintain resources that require more persistence that
the lifetime of a single R session (e.g. mounted drives, Kerberos tickets, etc.). If a user has multiple
active R sessions then closing the PAM session associated with one of them might unmount a drive
or revoke a ticket that is still required by another R session.

It is however possible to manually close the PAM session associated with an R session by force
suspending it. This can be accomplished in one of two ways:

1. By pressing the Suspend button on the Sessions page of the Administrative Dashboard.

2. By executing a force-suspend or force-suspend-all command as described in Suspending
Sessions.

If you prefer that PAM sessions be closed whenever their associated R session exits you can use the
auth-pam-sessions-close setting. For example:

/etc/rstudio/rserver.conf

auth-pam-sessions-close=1

Note that if you specify this setting be aware that depending upon what resources are managed
by your PAM sessions it may be incompatible with users running multiple concurrent R sessions
(because for example a drive might be unmounted from underneath a running session). In this case
you may wish to disable support for multiple R sessions (see the section on Multiple R Sessions for
details on how to do this).

5.4.3 Disabling PAM Sessions

If you don’t want RStudio Server to utilize PAM sessions you can disable this feature using the
auth-pam-sessions-enabled setting. For example:

/etc/rstudio/rserver.conf

auth-pam-sessions-enabled=0

5.5 Kerberos

You can use PAM sessions to arrange for Kerberos tickets to be made available for use by R sessions.
This is accomplished using the pam_krb5 PAM module. Note that you may need to install this
module separately depending on which Linux distribution/version you are running.

https://en.wikipedia.org/wiki/Kerberos_(protocol)
http://www.eyrie.org/~eagle/software/pam-krb5/pam-krb5.html

CHAPTER 5. R SESSIONS 42

5.5.1 Configuration

NOTE: You should be sure to understand the previous section on PAM Sessions before attempting
to modify your configuration to support Kerberos.
The following are simple examples of the pam_krb5 configuration directives you would need to
add to your RStudio PAM configuration files. Note that pam_krb5 supports a large number of
options, some of which may be required to get Kerberos working correctly in your environment.
You should consult the pam_krb5 documentation before proceeding to ensure you’ve specified all
options correctly.
The main PAM profile for RStudio should be modified to include the following pam_krb5 directives:
/etc/pam.d/rstudio

auth sufficient pam_krb5.so debug
account required pam_krb5.so debug
session requisite pam_krb5.so debug

In addition to modifying the main PAM profile, you will also need to create a custom PAM session
profile for RStudio (as described in Creating a Custom Profile). This needs to include the appropriate
pam_krb5 directives based on your local Kerberos configuration. For example:
/etc/pam.d/rstudio-session

auth required pam_krb5.so debug
account [default=bad success=ok user_unknown=ignore] pam_krb5.so debug
password sufficient pam_krb5.so use_authtok debug
session requisite pam_krb5.so debug

Note that typically when you create a custom PAM session profile you include the auth sufficient
pam_rootok.so directive. However, in the case of configuring for Kerberos authentication you do
not want this directive, rather you need to specify that authentication is done by Kerberos using an
explicit password as illustrated in the above example.
To ensure that the custom PAM session profile is used by RStudio Server and that PAM passwords
are correctly forwarded to pam_krb5 you’ll also need to add the following entries to the rserver.conf
config file:
/etc/rstudio/rserver.conf

auth-pam-sessions-profile=rstudio-session
auth-pam-sessions-use-password=1

Some additional notes regarding configuration:

• The debug action in the PAM profiles is not required however we recommend adding it as it
makes troubleshooting much more straightforward.

• The examples above are not complete examples of the contents of the PAM profiles but rather
illustrations of the pam_krb5 entries that need to be present. Your local environment may
have many additional entries which you should ensure are also included as necessary.

http://www.eyrie.org/~eagle/software/pam-krb5/pam-krb5.html

CHAPTER 5. R SESSIONS 43

You should be sure to suspend active R sessions and to restart RStudio Server after making
configuration changes to ensure that the new settings are being used. You can do this as follows:

sudo rstudio-server force-suspend-all
sudo rstudio-server restart

5.5.2 Testing and Troubleshooting

After making the required configuration changes you should test your updated PAM configuration
in isolation from RStudio Server using the pamtester utility as described in Diagnosing PAM
Authentication Problems. The following command will test both authentication as well as issuing of
Kerberos tickets:

sudo /usr/lib/rstudio-server/bin/pamtester --verbose \
rstudio-session <user> authenticate setcred open_session

Note that you should substitute an actual local username for the <user> part of the command line.

The specifics of both PAM configuration and Kerberos configuration can vary substantially by
environment. As a result correct configuration likely requires additional entries and options which
this guide isn’t able to cover. Please refer to the documentation linked to in [PAM Resources] as
well as the pam_krb5 for additional details.

5.6 Working Directories

The default working directory for both new R sessions and new R projects is the user’s home
directory (~). You can change this behavior via the session-default-working-dir and
session-default-new-project-dir configuration parameters within the rsession.conf config
file.

For example, the set the default values to “~/working” and “~/projects” you’d use the following
configuration:

/etc/rstudio/rsession.conf

session-default-working-dir=~/working
session-default-new-project-dir=~/projects

You should ensure that users have the permissions required to write to the specified default directories.
The specified directories will be automatically created if they don’t already exist.

Note that these settings control only the default working and new project directories (users can still
override these settings locally if they choose to).

http://www.eyrie.org/~eagle/software/pam-krb5/pam-krb5.html

CHAPTER 5. R SESSIONS 44

5.7 Workspace Management

5.7.1 Default Save Action

When a user exits an R session they need to choose whether to save their R workspace (i.e. .RData
file). RStudio has global and per-project settings that control what happens when a workspace has
unsaved changes. Possible values are:

• ask – Ask whether to save the workspace file
• yes – Always save the workspace file
• no – Never save the workspace file

The default global setting is ask and the default project-level setting is derived from the current
global setting (these options can be modified by end users via the Global Options and Project
Options dialogs respectively).
The default global setting can also be changed via the session-save-action-default configuration
parameter in the rsession.conf config file. For example, to change the default value to no you
would use this:
/etc/rstudio/rsession.conf

session-save-action-default=no

Note that this setting is specified in the rsession.conf config file and takes effect the next time a
user launches an R session (rather than requiring a full restart of the server).

5.7.2 Suspend and Resume

When R sessions have been idle (no processing or user interaction) for a specified period of time
(2 hours by default) RStudio Server suspends them to disk to free up server resources. When the
user next interacts with their session it is restored from disk and the user resumes right back where
they left off. This is all done seamlessly such that users aren’t typically aware that a suspend and
resume has occurred.

5.7.2.1 Session Timeout

To configure the amount of idle time to wait before suspending sessions you can use the
session-timeout-minutes setting in the /etc/rstudio/rsession.conf file. For example:
/etc/rstudio/rsession.conf

session-timeout-minutes=360

The default value if none is explicitly specified is 120 minutes.
Important note: this setting and a few others discussed in this section are specified in the
/etc/rstudio/rsession.conf file (rather than the rserver.conf file previously referenced).
There are some conditions where an R session will not be suspended, these include:

CHAPTER 5. R SESSIONS 45

1) When a top-level R computation is running
2) When the R prompt is not in it’s default state (e.g. during a debugging session)

You can also specify that R sessions should never be suspended by setting the session-timeout-minutes
to zero. For example:
/etc/rstudio/rsession.conf

session-timeout-minutes=0

You can also set session timeouts on a per-user or per-group basis, see the User and Group Profiles
section for details.

5.7.2.2 Forcing Suspends

You can force the suspend of individual sessions or even all sessions on the server. You can do this
directly from the main page of the Administrative Dashboard or from the system shell as follows:

$ sudo rstudio-server force-suspend-session <pid>
$ sudo rstudio-server force-suspend-all

5.7.2.3 Resume and .Rprofile

By default the Rprofile.site and .Rprofile files are not re-run when a session is resumed (it’s
presumed that all of their side-effects are accounted for by simply restoring loaded packages, options,
environment variables, etc.).
In some configurations it might be desirable to force the re-execution of profile files. There is an
end user option that controls this on the General options pane which defaults to false. However,
server administrators may wish to ensure that this option defaults to true. To do this you use the
session-rprofile-on-resume-default option. For example:
/etc/rstudio/rsession.conf

session-rprofile-on-resume-default=1

Note that this setting is specified in the rsession.conf config file and takes effect the next time a
user launches an R session (rather than requiring a full restart of the server).

5.7.3 Workspace Storage

Storage of workspaces (.RData files) in RStudio Server does not use compression by default. This
differs from the behavior of base R. Compression is disabled because we’ve observed that for larger
workspaces (> 50MB) compression can result in much lower performance for session startup and
suspend/resume (on the order of 3 or 4 times slower).
The default workspace save options under RStudio Server are as follows:

CHAPTER 5. R SESSIONS 46

options(save.defaults=list(ascii=FALSE, compress=FALSE))
options(save.image.defaults=list(ascii=FALSE, safe=TRUE, compress=FALSE))

If you wish to use different defaults you can define the save.defaults and/or save.image.defaults
options in your Rprofile.site or per-user .Rprofile and RStudio Server will respect the settings
you specify rather than using it’s own defaults.
See https://stat.ethz.ch/R-manual/R-devel/library/base/html/save.html for additional details on
how R saves objects and the storage and performance implications of using compression.

5.8 Project Sharing

5.8.1 Overview

Project Sharing is a feature of RStudio Server Pro that enables users to work together on RStudio
projects. When enabled, a project owner may select any number of other RStudio Server users as
project collaborators. RStudio Server manages the permissions of files in the project to ensure that
all collaborators can access them, enables multiple collaborators to edit a file simultaneously, and
lets collaborators see who else is working inside a project with them.

5.8.2 Prerequisites

5.8.2.1 Access Control Lists

To use Project Sharing, the directories hosting the projects to be shared must be on a volume that
supports POSIX Access Control Lists (ACLs). RStudio Server uses ACLs to grant collaborators
access to shared projects; ordinary file permissions are not modified.
Instructions for enabling ACLs vary by Linux distribution and filesystem type (see the Guide to
enabling ACLs on Ubuntu or RedHat, for example). Broadly, you will need to ensure that the
filesystem is mounted with the user_xattr and acl attributes, and modify /etc/fstab if necessary
to persist the attributes.
Note that many Linux distributions now have ACLs enabled by default in which case no special
configuration is required. You can use the tune2fs command to inspect the attributes with which
your filesystem is mounted (user_xattr and acl are required for project sharing).

5.8.2.2 Project Sharing and NFS

If you plan to use Project Sharing with NFS-mounted volumes, there are several caveats you should
be aware of.

1. Project sharing requires POSIX-compatible ACLs, and therefore requires version 3 of the NFS
protocol (NFSv3). It is not currently compatible with NFSv4, since NFSv4 has its own ACL
model which (despite being richer) doesn’t inter-operate well with POSIX ACLs. For more
information, see ACL Interoperability with NFS. You can typically use the nfsvers=3 mount
option to ensure your client connects with version 3 of the protocol

https://stat.ethz.ch/R-manual/R-devel/library/base/html/save.html
https://help.ubuntu.com/community/FilePermissionsACLs
https://help.ubuntu.com/community/FilePermissionsACLs
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-acls.html
http://wiki.linux-nfs.org/wiki/index.php/ACLs

CHAPTER 5. R SESSIONS 47

2. We recommend mounting NFS with the noac mount option. Without this option, NFS caches
file attributes, so it may not be possible for users working simultaneously in a project to know
whether they’re seeing each others’ latest changes. The noac option does reduce performance,
however, so we recommend testing to choose the right trade off for your environment.

3. Some features which automatically update when directory contents change will not update on
NFS. For instance, users may need to manually refresh the Files pane to see new files added
by collaborators.

5.8.2.3 Shared Storage

To use Project Sharing, a directory must be specified to which all users on the server can read and
write. In a single-server installation, RStudio uses this location by default:

/var/lib/rstudio-server/shared-storage

In a load-balanced configuration, however, RStudio does not provide a default, so it is necessary to
provision a path both visible to and writeable by all users on the system (typically on the same
filesystem on which home directories are mounted). This path can be supplied to RStudio Server
via the server-shared-storage-path option, for example:

/etc/rstudio/rserver.conf

server-shared-storage-path=/shared/rstudio-server/shared-storage

The server-shared-storage-path option (described above) configures the path used for shared
project storage. Note that this storage contains only links to shared projects, not the projects
themselves, so requires a very small amount of physical storage.

5.8.2.4 Proxy Settings

If you are running RStudio Server with a proxy, you’ll need to make sure that your proxy is correctly
configured to pass websocket connections through in order for all Project Sharing features to work.
See the Running with a Proxy section for more on this.

5.8.3 Disabling Project Sharing

Project Sharing is enabled by default however you can disable it using the server-project-sharing
option, for example:

/etc/rstudio/rserver.conf

server-project-sharing=0

CHAPTER 5. R SESSIONS 48

5.9 Package Installation

You can customize the location of user packages installed from CRAN as well as the default CRAN
repository. You can also configure the user-interface of the RStudio IDE to discourage end-user
package installation in the case where packages are deployed centrally to a site library.
Important note: The settings discussed in this section are specified in the /etc/rstudio/rsession.conf
file (rather than the rserver.conf file previously referenced).

5.9.1 User Library

By default R packages are installed into a user-specific library based on the contents of the
R_LIBS_USER environment variable (more details on this mechanism are here: http://stat.ethz.ch/
R-manual/R-devel/library/base/html/libPaths.html).
It’s also possible to configure an alternative default for user package installation using the
r-libs-user setting. For example:
/etc/rstudio/rsession.conf

r-libs-user=~/R/library

One benefit of establishing an alternative default user library path is that by doing this you can
remove the R version component of the package library path (which the default path contains).
This makes it possible to upgrade the major version of R on the server and have user’s packages
continue to work.

5.9.2 Discouraging User Installations

It may be that you’ve configured RStudio Server with a site package library that is shared by all users.
In this case you might wish to discourage users from installing their own packages by removing the
package installation UI from the RStudio IDE. To do this you use the allow-package-installation
setting. For example:
/etc/rstudio/rsession.conf

allow-package-installation=0

Note that this setting merely discourages package installation by removing user-interface elements.
It’s still possible for users to install packages directly using the utils::install.packages function.

5.9.3 CRAN Repositories

RStudio Server uses the RStudio CRAN mirror (https://cran.rstudio.com) by default. This mirror is
globally distributed using Amazon S3 storage so should provide good performance for all locales. You
may however wish to override the default CRAN mirror. This can be done with the r-cran-repos
settings. For example:
/etc/rstudio/rsession.conf

http://stat.ethz.ch/R-manual/R-devel/library/base/html/libPaths.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/libPaths.html
https://cran.rstudio.com

CHAPTER 5. R SESSIONS 49

r-cran-repos=http://cran.at.r-project.org/

Whatever the default CRAN mirror is, individual users are still able to set their own default. To
discourage this, you can set the allow-r-cran-repos-edit settings. For example:

/etc/rstudio/rsession.conf

allow-r-cran-repos-edit=0

Note that even with user editing turned off it’s still possible for users to install packages from
alternative repositories by directly specifying the repos parameter in a call to install.packages.

5.10 Feature Limits

RStudio Server has a number of other limits that can be configured. This section describes these
limits. Note that these settings are specified in the /etc/rstudio/rsession.conf file (rather than
the rserver.conf file previously referenced).

5.10.1 Disabling Access to Features

Besides the limits on package installation and CRAN repository editing described in the previous
section there are a number of other limits that can be specified. The following describes all of the
options that can be used to limit features.

/etc/rstudio/rsession.conf

allow-vcs Allow access to Git and SVN version control features.

allow-vcs-executable-edit Allow editing of the underlying Git or SVN executable.

allow-package-installation Allow installation of packages using the Packages Pane (note that
even if this is set to 0 it’s still possible to install packages using utils::install.packages
from the command line).

allow-r-cran-repos-edit Allow editing of the CRAN repository used for package downloads
(note that it’s still possible to specify an alternate repository using the repos parameter of
utils::install.packages).

allow-shell Allow access to the Tolls -> Shell dialog (note that it’s still possible to execute shell
commands using the system function).

allow-file-downloads Allow downloading files using the Export command in the Files Pane.

allow-external-publish Allow content to be published to external (cloud) services. This includes
publishing HTML documents created with R Markdown or R Presentations to RPubs (http:
//rpubs.com), and publishing Shiny applications and documents to ShinyApps.io (http:
//shinyapps.io). Note that this just removes the relevant user interface elements in the IDE,
and that it may still be possible for users to publish content using the R console.

http://rpubs.com
http://rpubs.com
http://shinyapps.io
http://shinyapps.io

CHAPTER 5. R SESSIONS 50

allow-publish Allow content to be published. If specified, this option removes all user interface
elements related to publishing content from the IDE, and overrides allow-external-publish.

All of these features are enabled by default. Specify 0 to disable access to the feature.

Note that these options should be specified in the /etc/rstudio/rsession.conf configuration file
(rather than the main rserver.conf configuration file).

5.10.2 Maximum File Upload Size

You can limit the maximum size of a file upload by using the limit-file-upload-size-mb setting.
For example, the following limits file uploads to 100MB:

/etc/rstudio/rsession.conf

limit-file-upload-size-mb=100

The default behavior is no limit on the size of file uploads.

5.10.3 CPU Time per Computation

If you want to prevent runaway computations that consume 100% of the CPU you can set
the maximum number of minutes to allow top-level R computations to run for using the
limit-cpu-time-minutes setting. For example:

/etc/rstudio/rsession.conf

limit-cpu-time-minutes=30

This specifies that no top level computation entered at the R console should run for more than 30
minutes. This constraint is implemented by calling the R setTimeLimit function immediately prior
to handing off console commands to R. As a result it is possible for a particular script to override
this behavior if it knows that it may exceed the threshold. This would be done as follows:

setTimeLimit(cpu = Inf)
Long running R code here...

5.10.4 XFS Disk Quotas

If your system uses the XFS file system (http://en.wikipedia.org/wiki/XFS) then RStudio Server
can be configured to notify users when they come close to or exceed their disk quota. You can
enable this using the limit-xfs-disk-quota setting. For example:

/etc/rstudio/rsession.conf

http://en.wikipedia.org/wiki/XFS

CHAPTER 5. R SESSIONS 51

limit-xfs-disk-quota=1

The user’s XFS disk quota will be checked when the RStudio IDE loads and a warning message will
be displayed if they are near to or over their quota.

Chapter 6

R Versions

6.1 Overview

RStudio Server enables users and administrators to have very fine grained control over which versions
of R are used in various contexts. Capabilities include:

1. Administrators can install several versions of R and specify a global default version as well as
per-user or per-group default versions.

2. Users can switch between any of the available versions of R as they like.

3. Users can specify that individual R projects remember their last version of R and always use
that version until explicitly migrated to a new version.

Flexible control over R versions make it much easier to provide upgraded versions of R for users (or
individual projects) that require them; while at the same time not disrupting work that requires
continued use of older versions.

6.2 Installing Multiple Versions of R

6.2.1 Binary and Source Versions

Versions of R can be obtained by various means, the most common of which is installing a binary
version from a standard apt-get (Debian/Ubuntu) or yum (RHEL) repository. Versions installed
this way are nearly always located in the /usr/lib/R directory.

You may also have obtained a binary version of R from a vendor like Oracle, Revolution Analytics,
or TIBCO. In those cases please consult the vendor’s documentation to determine the location
where R is installed and update the /etc/rstudio/r-versions file to point to it as described in
Determining Available Versions.

To install additional versions of open-source R side-by-side with a version obtained from an apt-get
or yum repository you will typically need to build R from source. The next section provides further
details and recommendations on building from source.

52

CHAPTER 6. R VERSIONS 53

6.2.2 Building Additional Versions from Source

6.2.2.1 Installing Dependencies

Installing additional versions of R side-by-side with the system version requires building R from
source but is very straightforward. First, ensure that you have the build dependencies required for
R, and that you’ve downloaded the R source code (available here). On RedHat/CentOS you’d use
this command:

$ sudo yum-builddep R

On Debian/Ubuntu systems you’d use this command:

$ sudo apt-get build-dep r-base

6.2.2.2 Configuring and Building R

Once you’ve satisfied the build dependencies, you should obtain and unarchive the source tarball for
the version of R you want to install. Then from within the extracted source directory execute these
commands (this example assumes you are installing R 3.2.0):

$./configure --prefix=/opt/R/3.2.0 --enable-R-shlib
$ make
$ sudo make install

Note that the --enable-R-shlib option is required in order to make the underlying R shared
library available to RStudio Server.

6.2.2.3 Using the System BLAS Libraries

You may also wish to link to the system BLAS libraries rather than use the R internal versions. For
this you’d use the following configure command:

./configure --prefix=/opt/R/3.1.0 --enable-R-shlib --with-blas --with-lapack

6.2.3 Recommended Installation Directories

RStudio Server automatically scans for versions of R at the following locations:

/usr/lib/R
/usr/lib64/R
/usr/local/lib/R
/usr/local/lib64/R
/opt/local/lib/R
/opt/local/lib64/R

https://cran.rstudio.com/

CHAPTER 6. R VERSIONS 54

In addition, RStudio Server scans all subdirectories of the following directories within /opt:

/opt/R
/opt/local/R

For example, any of the following installed versions of R will be automatically detected by RStudio
Server:

/opt/R/3.1.0
/opt/R/3.2.0
/opt/local/R/3.1.0
/opt/local/R/3.2.0

If you have versions of R located at other places in the file system RStudio Server can still utilize
them however you’ll need to explicitly specify their location in a configuration file (this is covered in
more detail in the [Using Multiple Versions] section).

6.3 Configuring the Default Version of R

When multiple versions of R are installed you will need to specify which version is the default one
for new R sessions. This can be done automatically via the system PATH however several other
mechanisms are provided when more flexibility is required.

6.3.1 Single Default Version of R

RStudio Server uses the version of R pointed to by the output of the following command:

$ which R

The which command performs a search for the R executable using the system PATH. RStudio will
therefore by default bind to the same version that is run when R is executed from a terminal.

For versions of R installed by system package managers this will be /usr/lib/R. For versions of R
installed from source this will typically (but not always) be /usr/local/lib/R.

If you want to override which version of R is used then you can use the rsession-which-r setting.
For example:

/etc/rstudio/rserver.conf

rsession-which-r=/usr/local/lib/R

Note that this change will not take effect until the server is restarted.

CHAPTER 6. R VERSIONS 55

6.3.2 Default Version Per User or Group

You can use the User and Group Profiles feature to specify distinct default versions of R for various
users and groups. For example, the following profile configuration uses R 3.1.0 as the system default,
R 3.2.0 for the powerusers group, and R 3.0.2 for the user jsmith:

[*]
r-version = /opt/R/3.1.0

[@powerusers]
r-version = /opt/R/3.2.0

[jsmith]
r-version = /opt/R/3.0.2

Note that r-version specifies the full path to the directory where R is installed.

6.3.3 User Configurable Default Version

Users can also configure their own default version of R. This is done using the General pane of the
Global Options dialog:

Figure 6.1: Set Default R Version

See the Disabling Use of Multiple Versions section for details on how to disable version switching
entirely either system-wide or on a per-user or per-group basis.

CHAPTER 6. R VERSIONS 56

6.4 Using Multiple Versions of R Concurrently

6.4.1 Determining Available Versions

RStudio Server scans for and automatically discovers versions of R in the following locations:

/usr/lib/R
/usr/lib64/R
/usr/local/lib/R
/usr/local/lib64/R
/opt/local/lib/R
/opt/local/lib64/R
/opt/R/*
/opt/local/R/*

This is described in more detail in the Recommended Installation Directories section. If you have
installed versions of R in alternate locations you can list them within the /etc/rstudio/r-versions
configuration file (note that this file is not created by default so you’ll need to create it if doesn’t
already exist). For example:
/etc/rstudio/r-versions

/opt/R-3.2.1
/opt/R-devel-3.3

In addition, any version of R referenced in an r-version directive within User and Group Profiles
is also recognized.
In order to be usable, the R home path must be readable by the RStudio server account (usually
rstudio-server; see Access and Security for details).

6.4.1.1 Excluding Versions

If you have versions of R on your system that would normally be picked up by automatic scanning
but which you’d like to exclude, the most straightforward thing to do is to disable R version scanning
altogether and explicitly specify all versions you’d like to use in /etc/rstudio/r-versions. For
example:
/etc/rstudio/rserver.conf

r-versions-scan=0

6.4.2 Switching Between Versions

To switch between versions of R you use the version menu near the top right of the IDE:
After switching, the specified version will be used for the duration of the current session (see the
section on Multiple R Sessions for more details on the lifetime of sessions). Newly created R sessions
will continue to use whatever default R version has been configured for the user.

CHAPTER 6. R VERSIONS 57

Figure 6.2: Switching Versions

6.4.2.1 Preserving Versions for Projects

It’s often useful to preserve the version used within an R project irrespective of whatever the current
default R version is for a user. This is in fact the behavior by default for RStudio projects however
can be changed from the the General pane of the Global Options dialog.

This configuration enables users to easily migrate projects one-by-one to a new version of R after
it’s been confirmed that all the code continues to work as expected under the new version.

6.4.3 Disabling Use of Multiple Versions

If you want to prevent users from being able to change R versions entirely you can use the
r-versions-multiple option:

/etc/rstudio/rserver.conf

r-versions-multiple=0

You can also configure this on a per-user or per-group basis by specifying the r-versions-multiple
option within User and Group Profiles.

6.5 Managing Upgrades of R

There are various ways to handle upgrades to new versions of R ranging from allowing each user to
control exactly when they upgrade all the way to forcing everyone to upgrade all at once.

By combining the various options described above you can create a highly customized upgrade
policy that reflects both your internal policies and the preferences of your users.

CHAPTER 6. R VERSIONS 58

6.5.1 User Controlled Migration

The most conservative approach is to start with a default version of R and preserve that default for
the lifetime of the server. In this configuration you can continue to install new versions of R as they
are released however users won’t ever run those new versions unless they make an explicit gesture
to do so. See the User Configurable Default Version and Switching Between Versions sections for
details on how users can explicitly switch versions.

6.5.2 Partial Migration

If your posture towards new R versions is that you’d like users to migrate to the new version(s) as
quickly as is convenient you can be more aggressive in how you introduce them. In this scenario
you might use the Default Version Per User or Group feature to migrate a portion of new users
immediately but preserve older versions for those who request it.

Note that in this scenario R projects will still preserve their previous R version so long as users
have enabled the option described in Preserving Versions for Projects.

6.5.3 Full Migration

The most aggressive approach is to force all users to upgrade to the new R version immediately
(this is essentially what happens in the open-source version of RStudio Server). To implement this
you’d set a Single Default Version of R as well as disabling the use multiple versions as described in
Disabling Use of Multiple Versions.

Note that via User and Group Profiles you could also have a subset of R users that are always fully
migrated to new versions while preserving user controlled migration or partial migration for others.

Chapter 7

Load Balancing

7.1 Overview

RStudio Server can be configured to load balance R sessions across two or more nodes within a
cluster. This provides both increased capacity as well as higher availability.

Note that load balancing for RStudio Server has some particular “stickiness” requirements stemming
from the fact that users must always return to the same R session where their work resides (i.e. their
traffic can’t be handled by more than one node). As a result, it’s not enough to simply place
multiple RStudio Servers behind a conventional hardware or software load balancer—additional
intelligence and routing is required.

Key characteristics of the RStudio Server load balancer include:

1. Multiple masters for high availability—all nodes can balance traffic to all other nodes.

2. Support for several load balancing strategies including least busy server (by active sessions or
system load), even distribution by user, or a custom strategy based on an external script.

3. The ability to add and remove nodes while the cluster is running.

4. Works standalone or can be integrated with other front-end load balancing environments.

7.2 Configuration

7.2.1 Requirements

There are several requirements for nodes within RStudio clusters:

1. All nodes must run the same version of RStudio Server Pro.

2. Server configurations (i.e. contents of the /etc/rstudio directory) must be identical.

3. User accounts must be accessible from each node and usernames and user ids must be identical
on all nodes.

59

CHAPTER 7. LOAD BALANCING 60

4. The clocks on all nodes must be synchronized.

5. User home directories must be accessible via shared storage (e.g. all nodes mounting the
same NFS volume).

6. To use the Project Sharing feature in a load balanced configuration an explicit server-wide
shared storage path also must be defined. See the Shared Storage section for additional details.

7. To use the Project Sharing feature with an NFS volume, the NFS volume must be mounted
using NFSv2 or NFSv3 with POSIX ACL support. NFSv4 is not recommended because it is
not generally compatible with POSIX ACLs.

7.2.2 Defining Nodes

To define a cluster node, two configuration files need to be provided:

/etc/rstudio/load-balancer
/etc/rstudio/secure-cookie-key

The first of these defines the available nodes and load balancing strategy. The second defines a
shared key used for signing cookies (in single node configurations this key is generated automatically,
however with multiple nodes explicit coordination is required).

For example, to define a cluster with two nodes that load balances based the number of actively
running R sessions you could use the following configuration:

/etc/rstudio/load-balancer

[config]

balancer = sessions

[nodes]

server1.example.com
server2.example.com

/etc/rstudio/secure-cookie-key

a55e5dc0-d6ae-11e3-9334-000c29635f71

The secure cookie key is simply a unique value (in this case a UUID). Note that this file must have
user read/write file permissions (i.e. 0600) to protect its contents from other users. You can create
a secure cookie key using the uuid utility as follows:

sudo sh -c "echo `uuid` > /etc/rstudio/secure-cookie-key"
sudo chmod 0600 /etc/rstudio/secure-cookie-key

CHAPTER 7. LOAD BALANCING 61

In addition, an explicit server-wide shared storage path must be defined (this is used for inter-node
synchronization). This path is defined in the /etc/rstudio/rserver.conf file. For example:

/etc/rstudio/rserver.conf

server-shared-storage-path=/shared/rstudio-server/shared-storage

For convenience, this path will often be located on the same volume used for shared home directory
storage (e.g. at path /home/rstudio-server/shared-storage).

7.2.3 File Locking

In order to synchronize the creation of sessions across multiple nodes RStudio Server uses a cross-
node locking scheme. This scheme relies on the clocks on all nodes being synchronized. RStudio
Server includes a locktester utility which you can use to verify that file locking is working correctly.
To use the locktester you should login (e.g. via SSH or telnet) to at least two nodes using the
same user account and then invoke the utility from both sessions as follows:

$ /usr/lib/rstudio-server/bin/locktester

The first node you execute the utility from should print the following message:

*** File Lock Acquired ***

After the message is printed the process will pause so that it can retain the lock (you can cause it
to release the lock by interrupting it e.g. via Ctrl+C).

The second and subsequent nodes you execute the utility from should print the following message:

Unable to Acquire File Lock

If you interrupt the first node (e.g. via Ctrl+C) the lock will be released and you can then acquire
it from the other nodes.

If either of the following occurs then there is an issue with file locking capabilities (or configuration)
that should be addressed prior to using load balancing:

1) All nodes successfully acquire the file lock (i.e. more than one node can hold it concurrently).
2) No nodes are able to acquire the file lock.

If either of the above conditions hold then RStudio won’t be able to correctly synchronize the
creation of R sessions throughout the cluster (potentially resulting in duplicate sessions and lost
data due to sessions overwriting each others state).

CHAPTER 7. LOAD BALANCING 62

7.2.3.1 Lock Configuration

RStudio’s file locking scheme can be configured using a file at /etc/rstudio/file-locks. Valid
entries are:

• lock-type=[linkbased|advisory]
• refresh-rate=[seconds]
• timeout-interval=[seconds]
• enable-logging=[0|1]

The default locking scheme, linkbased, uses a file locking scheme whereby locks are considered
acquired when the process successfully hardlinks a dummy file to a location within the folder
RStudio uses for client state (typically ~/.rstudio). This scheme is generally more robust with
older network file systems, and the locks should survive temporary filesystem mounts / unmounts.
The timeout-interval and refresh-rate options can be used to configure how often the locks
generated in the linkbased locking scheme are refreshed and reaped. By default, a process refreshes
any locks it owns every 20 seconds, and scans for stale locks every 30 seconds. If an rsession
process crashes, it can leave behind stale lock files; those lock files will be cleaned up after they
expire by any newly-launched rsession processes.
advisory can be selected to use advisory file locks (using e.g. fcntl() or flock()). These locks
are robust, but are not supported by all network file systems.
If you are having issues with file locking, you can set enable-logging=1; RStudio will log infor-
mation on the locks it obtains (or fails to obtain) in the system logs; e.g. /var/lib/messages or
/var/lib/syslog.

7.2.4 Managing Nodes

7.2.4.1 Starting Up

After creating your configuration files you should ensure that these files (along with all other
configuration defined in /etc/rstudio) are copied to all nodes in the cluster. Assuming that
the server is already installed and running on each node, you can then apply the load balancing
configuration by restarting the server:

sudo rstudio-server restart

7.2.4.2 Current Status

Once the cluster is running you can inspect it’s state (which sessions are running where) using the
load balancing status HTTP endpoint. For example:

curl http://localhost/load-balancer/status

Note that the status endpoint is accessed using localhost rather than an external IP address. This
is because this endpoint is IP restricted to only be accessible within the cluster, so needs to be
accessed directly from one of the nodes.

CHAPTER 7. LOAD BALANCING 63

7.2.4.3 Adding and Removing Nodes

To temporarily remove a node from the cluster you can simply stop it:

sudo rstudio-server stop

R sessions running on that node will be automatically moved to another active node. To restore the
node you can simply start it back up again:

sudo rstudio-server start

Note that adding and removing nodes does not require changing the list of defined nodes in
/etc/rstudio/load-balancer (traffic is automatically routed around nodes not currently running).

7.2.5 Troubleshooting

If users are having difficulty accessing RStudio Server in a load balanced configuration it’s likely
due to one of the load balancing requirements not being satisfied. This section describes several
scenarios where a failure due to unsatisfied requirements might occur.

7.2.5.1 User Accounts Not Synchronized

One of the load balancing requirements is that user accounts must be accessible from each node and
usernames and user ids must be identical on all nodes. If a user has the same username but different
user ids on different nodes then permissions problems will result when the same user attempts to
access shared storage using different user-ids.

You can determine the ID for a given username via the id command. For example:

id -u jsmith

7.2.5.2 NFS Volume Mounting Problems

If NFS volumes containing shared storage are unmounted during an RStudio session that session
will become unreachable. Furthermore, unmounting can cause loss or corruption of file locks (see
section below). If you are having problems related to accessing user directories then fully resetting
the connections between RStudio nodes and NFS will often resolve them. To perform a full reset:

1) Stop RStudio Server on all nodes (sudo rstudio-server stop).

2) Fully unmount the NFS volume from all nodes.

3) Remount the NFS volume on all nodes.

4) Restart RStudio Server on all nodes (sudo rstudio-server start).

CHAPTER 7. LOAD BALANCING 64

7.2.5.3 File Locking Problems

Shared user storage (e.g. NFS) must support file locking so that RStudio Server can synchronize
access to sessions across the various nodes in the cluster. File locking will not work correctly if the
clocks on all nodes in the cluster are not synchronized. You can verify that file locking is working
correctly by following the instructions in the File Locking section above.

7.3 Access and Availablity

Once you’ve defined a cluster and brought it online you’ll need to decide how the cluster should be
addressed by end users. There are two distinct approaches to this:

1. Single Master. Provide users with the address of one of the nodes. This node will auto-
matically route traffic and sessions as required to the other nodes. This has the benefit of
simplicity (no additional software or hardware required) but also results in a single point of
failure.

2. Multiple Masters. Put the nodes behind some type of system that routes traffic to them
(e.g. dynamic DNS or a software or hardware load balancer). While this requires additional
configuration it also enables all of nodes to serve as points of failover for each other.

Both of these options are described in detail below.

7.3.1 Single Master

In a Single Master configuration, you designate one of the nodes in the cluster as the primary one
and provide end users with the address of this node as their point of access. For example:

[nodes]
rstudio.example.com
rstudio2.example.com
rstudio3.example.com

Users would access the cluster using **http://rstudio.example.com**. This node would in turn
route traffic and sessions both to itself and the other nodes in the cluster in accordance with the
active load balancing strategy.

Note that in this configuration the rstudio2.example.com and rstudio3.example.com nodes
can either fail or be removed from the cluster at any time and service will continue to users. However,
if the main node fails or is removed then the cluster is effectively down.

7.3.2 Multiple Masters

In a Multiple Masters configuration all of the nodes in the cluster are peers and provide failover for
each other. This requires that some external system (dynamic DNS or a load balancer) route traffic

http://rstudio.example.com**

CHAPTER 7. LOAD BALANCING 65

to the nodes. In this scenario any of the nodes can fail and service will continue (so long as the
external router can respond intelligently to a node being unreachable).

For example, here’s an Nginx reverse-proxy configuration that you could use with the cluster defined
above:

http {
upstream rstudio-server {

server rstudio1.example.com;
server rstudio2.example.com backup;
server rstudio3.example.com backup;

}
server {

listen 80;
location / {

proxy_pass http://rstudio-server;
proxy_redirect http://rstudio-server/ $scheme://$host/;

}
}

}

In this scenario the Nginx software load balancer would be running on rstudio.example.com
and reverse proxy traffic to rstudio1.example.com, rstudio2.example.com, etc. Note that one
node is designated as primary so traffic is routed there by default. However, if that node fails then
Nginx automatically makes use of the backup nodes.

This is merely one example as there are many ways to route traffic to multiple servers—RStudio
Server load balancing is designed to be compatible with all of them.

7.3.3 Using SSL

If you are running an RStudio Server on a public facing network then using SSL encryption is
strongly recommended. Without this all user session data is sent in the clear and can be intercepted
by malicious parties.

The recommended SSL configuration depends on which access topology you’ve deployed:

1. For a Single Master deployment, you would configure each node of the cluster to use SSL as
described in the Secure Sockets (SSL) section. The nodes will then use SSL for both external
and intra-machine communication.

2. For a Multiple Masters deployment, you would configure SSL within the external routing layer
(e.g. the Nginx server in the example above) and use standard unencrypted HTTP for the
individual nodes. You can optionally configure the RStudio nodes to use SSL as well, but this
is not strictly required if all communication with outside networks is done via the external
routing layer.

http://wiki.nginx.org/Main

CHAPTER 7. LOAD BALANCING 66

7.4 Balancing Methods

There are four methods available for balancing R sessions across a cluster. The most appropriate
method is installation specific and depends on the number of users and type of workloads they
create.

7.4.1 Sessions

The default balancing method is sessions, which attempts to evenly distribute R sessions across
the nodes of the cluster:

[config]
balancer = sessions

This method allocates new R sessions to the node with the least number of active R sessions. This
is a good choice if you expect that users will for the most part have similar resource requirements.

7.4.2 System Load

The system-load balancing method distributes sessions based on the active workload of available
nodes:

[config]
balancer = system-load

The metric used to establish active workload is the 5-minute load average. This is a good choice
if you expect widely disparate CPU workloads and want to ensure that machines with high CPU
utilization don’t receive new sessions.

7.4.3 User Hash

The user-hash balancing method attempts to distribute load evenly and consistently across nodes
by hashing the username of clients:

[config]
balancer = user-hash

The hashing algorithm used is CityHash, which will produce a relatively even distribution of users
to nodes. This is a good choice if you want the assignment of users/sessions to nodes to be stable.

7.4.4 Custom

The custom balancing method calls out to external script to make load balancing decisions:

http://en.wikipedia.org/wiki/Load_(computing)
http://en.wikipedia.org/wiki/CityHash

CHAPTER 7. LOAD BALANCING 67

[config]
balancer = custom

When custom is specified, RStudio Server will execute the following script when it needs to make a
choice about which node to start a new session on:

/usr/lib/rstudio-server/bin/rserver-balancer

This script will be passed two environment variables:

RSTUDIO_USERNAME — The user on behalf or which the new R session is being created.

RSTUDIO_NODES — Comma separated list of the IP address and port of available nodes.

The script should return the node to start the new session on using it’s standard output. Note that
the format of the returned node should be identical to it’s format as passed to the script (i.e. include
the IP address and port).

Chapter 8

Auditing and Monitoring

8.1 Auditing Configuration

8.1.1 R Console Auditing

RStudio Server can be optionally configured to audit all R console activity by writing console input
and output to a central location (the /var/lib/rstudio-server/audit/r-console directory by
default). This feature can be enabled using the audit-r-console setting. For example:

/etc/rstudio/rserver.conf

audit-r-console=input

This will audit all R console input. If you wish to record both console input and output then you
can use the all setting. For example:

/etc/rstudio/rserver.conf

audit-r-console=all

Note that if you choose to record both input and output you’ll need considerably more storage
available than if you record input only. See the Storage Options section below for additional
discussion of storage requirements and configuration.

8.1.1.1 Data Format

The R console activity for each user is written into individual files within the r-console data
directory (by default /var/lib/rstudio-server/audit/r-console). The following fields are
included:

session_id Unique identifier for R session where this action occurred.
project Path to RStudio project directory if the action occurred within a

project.
pid Unix process ID where this console action occurred.

68

CHAPTER 8. AUDITING AND MONITORING 69

username Unix user which executed this console action.
timestamp Timestamp of action in milliseconds since the epoch.
type Console action type (prompt, input, output, or error).
data Console data associated with this action (e.g. output text).

The session_id field refers to a concurrent R session as described in the section on Multiple R
Sessions (i.e. it can span multiple projects and/or pids).

The default format for the log file is CSV (Comma Separated Values). It’s also possible to write the
data to Newline Delimited JSON by using the audit-r-console-format option. For example:

audit-r-console-format=json

Note that when using the JSON format the entire file is not a valid JSON object but rather each
individual line is one. This follows the Newline Delimited JSON specification supported by several
libraries including the R jsonlite package.

8.1.1.2 Storage Options

You can customize both the location where audit data is written as well as the maximum amount of
data to log per-user (by default this is 50 MB). To specify the root directory for audit data you use
the audit-data-path setting. For example:

/etc/rstudio/rserver.conf

audit-data-path=/audit-data

Note that this path affects the location of both R console auditing and R session auditing data.

To specify the maximum amount of data to write to an individual user’s R console log file you use
the audit-r-console-user-limit-mb setting. For example:

/etc/rstudio/rserver.conf

audit-r-console-user-limit-mb=100

The default maximum R console log file size is 50 megabytes per-user. To configure no limit to the
size of files which can be written you set the value to 0, for example:

/etc/rstudio/rserver.conf

audit-r-console-user-limit-mb=0

Note that there is no automatic rotation of the audit log files as they get larger. Depending on
the number of users and their activity level this means that you should either create a scheduled
(e.g. cron) job to periodically move the files off the server onto auxiliary storage and/or ensure that
the volume they are stored on has sufficient capacity.

http://ndjson.org/

CHAPTER 8. AUDITING AND MONITORING 70

8.1.2 R Session Auditing

RStudio Server can be optionally configured to write an audit log of session related events (e.g. lo-
gin/logout, session start/suspend/exit) to a central location (the /var/lib/rstudio-server/audit/r-sessions
directory by default). This feature can be enabled using the audit-r-sessions setting. For
example:

/etc/rstudio/rserver.conf

audit-r-sessions=1

8.1.2.1 Data Format

The R session event log is written by default to the file at /var/lib/rstudio-server/audit/r-sessions/r-sessions.csv.
The following fields are included:

pid Unix process ID the event is associated with (for auth events this
will be the main rserver process, for session events the rsession
process).

username Unix user that the event is associated with.
timestamp Timestamp of event in milliseconds since the epoch.
type Event type (see documentation on event types below).
data Administrative user that initiated event (only applies to admin

events and auth_login for login-as-user by admin).

The following values are valid for the event type field:

auth_login User logged in to RStudio Server
auth_logout User logged out of RStudio Server
auth_login_failed User login attempt failed
session_start R session started
session_suicide R session exiting due to suicide (internal error)
session_suspend R session exiting due to suspend
session_quit R session exiting due to user quit
session_exit R session exited
session_admin_suspend Administrator attempt to suspend R session
session_admin_terminate Administrator attempt to terminate R session

The default format for the log file is CSV (Comma Separated Values). It’s also possible to write the
data to Newline Delimited JSON by using the audit-r-sessions-format option. For example:

audit-r-sessions-format=json

Note that when using the JSON format the entire file is not a valid JSON object but rather each
individual line is one. This follows the Newline Delimited JSON specification supported by several
libraries including the R jsonlite package.

http://ndjson.org/

CHAPTER 8. AUDITING AND MONITORING 71

8.1.2.2 Storage Options

You can customize both the location where audit data is written as well as the maximum amount of
R session event data to log (by default this is 1 GB). To specify the root directory for audit data
you use the audit-data-path setting. For example:

/etc/rstudio/rserver.conf

audit-data-path=/audit-data

Note that this path affects the location of both R console auditing and R session auditing data.

To specify the maximum amount of R session event data to log you use the audit-r-sessions-limit-mb
setting. For example:

/etc/rstudio/rserver.conf

audit-r-sessions-limit-mb=2048

The default maximum R session event log file size is 1 GB (1024 MB). To configure no limit to the
size of files which can be written you set the value to 0, for example:

/etc/rstudio/rserver.conf

audit-r-sessions-limit-mb=0

Note that there is no automatic rotation of the R session event log file as it gets larger. This means
that you should either create a scheduled (e.g. cron) job to periodically move the file off the server
onto auxiliary storage and/or ensure that the volume that it is stored on has sufficient capacity.

In any case, the amount of data written to the R session event log file is not large (less than 1 KB
per session) so a large number of session events can be stored within the default 1 GB maximum
log file size.

8.2 Monitoring Configuration

8.2.1 System and Per-User Resources

RStudio Server monitors the use of resources (CPU, memory, etc.) on both a per-user and system
wide basis. By default, monitoring data is written to a set of RRD (http://oss.oetiker.ch/rrdtool/)
files and can be viewed using the Administrative Dashboard.

The storage of system monitoring data requires about 20MB of disk space and the storage
of user monitoring data requires about 3.5MB per user. This data is stored by default at
/var/lib/rstudio-server/monitor. If you have a large number of users you may wish to specify
an alternate volume for monitoring data. You can do this using the monitor-data-path setting.
For example:

/etc/rstudio/rserver.conf

http://oss.oetiker.ch/rrdtool/

CHAPTER 8. AUDITING AND MONITORING 72

monitor-data-path=/monitor-data

You also might wish to disable monitoring with RRD entirely. You can do this using the
monitor-rrd-enabled setting. For example:

/etc/rstudio/rserver.conf

monitor-rrd-enabled=0

Note that changes to the configuration will not take effect until the server is restarted.

8.2.2 Using Graphite

If you are managing several servers it might be convenient to send server monitoring data to a
centralized database and graphing facility as opposed to local RRD files. You can do this by
configuring the server to send monitoring data to Graphite (or any other engine compatible with
the Carbon protocol). This can be done in addition to or entirely in place of RRD.

There are four settings that control interaction with Graphite:

monitor-graphite-
enabled

Write monitoring data to Graphite (defaults to 0)

monitor-graphite-host Host running Graphite (defaults to 127.0.0.1)
monitor-graphite-port Port Graphite is listening on (defaults to 2003)
monitor-graphite-
client-id

Optional client ID for sender

For example, to enable Graphite monitoring on a remote host with the default Graphite port you
would use these settings:

/etc/rstudio/rserver.conf

monitor-graphite-enabled=1
monitor-graphite-host=134.47.22.6

If you are using a service like hosted graphite.com that requires that you provide an API key as
part of reporting metrics you can use the monitor-graphite-client-id setting. For example:

/etc/rstudio/rserver.conf

monitor-graphite-enabled=1
monitor-graphite-host=carbon.hostedgraphite.com
monitor-graphite-client-id=490662a4-1d8c-11e5-b06d-000c298f3d04

Note that changes to the configuration will not take effect until the server is restarted.

http://graphite.wikidot.com/

CHAPTER 8. AUDITING AND MONITORING 73

8.3 Server Health Checks

8.3.1 Enabling Health Checks

You may wish to periodically poll RStudio Server to ensure that it’s still responding to requests as
well as to examine various indicators of server load. You can enable a health check endpoint using
the server-health-check-enabled setting. For example:

/etc/rstudio/rserver.conf

server-health-check-enabled=1

After restarting the server, the following health-check endpoint will be available:

http://<server-address-and-port>/health-check

By default, the output of the health check will appear as follows:

active-sessions: 1
cpu-percent: 0.0
memory-percent: 64.2
swap-percent: 0.0
load-average: 4.1

CHAPTER 8. AUDITING AND MONITORING 74

8.3.2 Customizing Responses

The response to the health check is determined by processing a template that includes several
variables. The default template is:

active-sessions: #active-sessions#
cpu-percent: #cpu-percent#
memory-percent: #memory-percent#
swap-percent: #swap-percent#
load-average: #load-average#

You can customize this template to return an alternate format (e.g. XML or JSON) that is parse-
able by an external monitoring system. To do this you simply create a template and copy it to
/etc/rstudio/health-check For example:

/etc/rstudio/health-check

<?xml version="1.0" encoding="UTF-8"?>
<health-check>

<active-sessions>#active-sessions#</active-sessions>
<cpu-percent>#cpu-percent#</cpu-percent>
<memory-percent>#memory-percent#</memory-percent>
<swap-percent>#swap-percent#</swap-percent>
<load-average>#load-average#</load-average>

</health-check>

8.3.3 Changing the URL

It’s also possible to customize the URL used for health checks. RStudio Server will use the first file
whose name begins with health-check in the /etc/rstudio directory as the template, and require
that the full file name be specified in the URL. For example, a health check template located at the
following path:

/etc/rstudio/health-check-B64C900E

Would be accessed using this URL:

http://<server-address-and-port>/health-check-B64C900E

Note that changes to the health check template will not take effect until the server is restarted.

Chapter 9

License Management

9.1 Product Activation

9.1.1 Activation Basics

When RStudio Server is first installed on a system it operates in evaluation mode for a period of
time and then subsequently requires activation for continued use. To determine the current license
status of your system you can use the following command:

$ sudo rstudio-server license-manager status

After purchasing a license to RStudio Server you’ll receive a product key that can be used to activate
the license on a given system. You can perform the activation as follows:

$ sudo rstudio-server license-manager activate <product-key>
$ sudo rstudio-server restart

Note that you need to restart the server in order for licensing changes to take effect.

If you want to move your license of RStudio Server to another system you should first deactivate it
on the system you are moving from. For example:

$ sudo rstudio-server license-manager deactivate

9.2 Connectivity Requirements

In order to activate or deactivate RStudio Server internet connectivity is required for communication
with the licensing server. If your server is behind an internet proxy or not connected to the internet
at all this section describes what’s required to successfully activate.

75

CHAPTER 9. LICENSE MANAGEMENT 76

9.2.1 Proxy Servers

If your server is behind an internet proxy you may need to add an additional command line flag
indicating the address and credentials required to communicate through the proxy. Note however
that this may not be necessary if either the http_proxy or all_proxy environment variable is
defined (these are read and used by RStudio Server when available).

If you do need to specify a proxy server explicitly you can do so using the --proxy command line
parameter. For example:

$ sudo rstudio-server license-manager --proxy=http://127.0.0.1/ activate <product-key>

Proxy settings can include a host-name, port, and username/password if necessary. The following
are all valid proxy configurations:

http://127.0.0.1/
http://127.0.0.1:8080/
http://user:pass@127.0.0.1:8080/

If the port is not specified, the license manager will default to using port 1080.

9.2.2 Offline Activation

If your system has no connection to the internet it’s also possible to perform an offline activation.
To do this, you first generate an offline activation request as follows:

$ sudo rstudio-server license-manager activate-offline-request <product-key>

Executing this command will print an offline activation request to the terminal which you should
copy and paste and then send to RStudio customer support (support@rstudio.com). You will receive
a reply with a file attachment that can be used to activate offline as follows:

$ sudo rstudio-server license-manager activate-offline <activation-file>
$ sudo rstudio-server restart

Note that you need to restart the server in order for licensing changes to take effect.

If you want to move your license of RStudio Server to another system you can also perform license
deactivation offline. You can do this as follows:

$ sudo rstudio-server license-manager deactivate-offline

Executing this command will print an offline deactivation request to the terminal which you should
copy and paste and then send to RStudio customer support (support@rstudio.com).

You can also perform an offline check of your current license status using the following command:

support@rstudio.com
support@rstudio.com

CHAPTER 9. LICENSE MANAGEMENT 77

$ sudo rstudio-server license-manager status-offline

	Getting Started
	Introduction
	Installation
	Management Script
	Activation
	Accessing the Server

	Server Management
	Core Administrative Tasks
	Administrative Dashboard

	Authenticating Users
	PAM Authentication
	Restricting Access to Specific Users
	Google Accounts
	Customizing the Sign-In Page
	Proxied Authentication

	Access and Security
	Network Port and Address
	IP Access Rules
	Frame Origin
	Secure Sockets (SSL)
	Server Permissions
	Running with a Proxy

	R Sessions
	R Executable and Libraries
	User and Group Profiles
	Multiple R Sessions
	PAM Sessions
	Kerberos
	Working Directories
	Workspace Management
	Project Sharing
	Package Installation
	Feature Limits

	R Versions
	Overview
	Installing Multiple Versions of R
	Configuring the Default Version of R
	Using Multiple Versions of R Concurrently
	Managing Upgrades of R

	Load Balancing
	Overview
	Configuration
	Access and Availablity
	Balancing Methods

	Auditing and Monitoring
	Auditing Configuration
	Monitoring Configuration
	Server Health Checks

	License Management
	Product Activation
	Connectivity Requirements

