RStudio Connect: Admin Guide

Version 1.6.8.2-12

Abstract

This guide will help an administrator install and configure RStudio Connect on a managed server.
You will learn how to install the product on different operating systems, configure authentication, and
monitor system resources.

Contents

1 Introduction

1.1 System Requirements L

Getting Started
2.1 Imstallation L
2.2 Imitial Configuration L e

License Management

3.1 Capabilities L
3.2 Notification of Expiration
3.3 Product Activation
3.4 Connectivity Requirements L L
3.5 Evaluations e
3.6 Licensing Errors
3.7 Floating Licenses o e
Files & Directories

4.1 Program Files oL
4.2 Configuration L
4.3 Server Logo
4.4 Access Logs o e
4.5 Application Logs e
4.6 Variable Data
4.7 Backups e
4.8 Server Migrationso

Server Management

5.1 Stopping and Starting
5.2 System Messages
5.3 Health-Check e
5.4 Upgrading oo e
5.5 Purging RStudio Connect L e
5.6 Docker
High Availability and Load Balancing

6.1 HA Checklist e
6.2 HA Limitations L e e e
6.3 Updating HA Nodes
6.4 Downgrading L e e
6.5 HA Details e

e~

ot

11
11
12
12
12
14
15
15

18
18
18
18
18
19
19
20
21

21
22
23
24
24
24
25

7 Running with a Proxy
7.1 Nginx Configuration e
7.2 Apache Configuration

8 Security & Auditing
8.1 API Security e
8.2 Browser Security L e
8.3 Audit Logs e
8.4 Application Environment Variables L L o

9 Database
9.1 SQLite o
9.2 PostgreSQL
9.3 Changing Database Provider

10 Authentication
10.1 Changing Authentication Provider L
10.2 Session Managemento e
10.3 Username requirements oo e e e e e e
10.4 User Attribute Editability
10.5 Password L
10.6 LDAP and Active Directory
10.7 OAuth2 (Google)
10.8 PAM . . . o e e
10.9 Proxied Authentication L

11 User Management
11.1 User Roles o e e e
11.2 User Provisioning L
11.3 Group Support e e e
11.4 User Permissions e e
11.5 Administrator Capabilities
11.6 Locked Accounts 0 e e e e
11.7 Username Requirements L L e
11.8 User Renaming L
11.9 Command-Line Interface

12 Process Management
12.1 Sandboxing
12.2 Temporary Directory L e e e e e e
12.3 Shiny Applications & Plumber APIs
12.4 TensorFlow Model APIs
12.5 User Account for R Processes e
12.6 Current user execution L.
12.7 PAM S€SSIONS . . .« o o o e e
12.8 Path Rewriting o e
12.9 Program SUpervisors i e e e e e e
12.10Using the config Package L

13 Content Management
13.1 Sharing Settings L
13.2 Vanity Paths 0 e
13.3 Tags o e
13.4 Bundle Management L L e e
13.5 APT Keys o o e

32
32
33

34
34
34
38
39

39
39
40
41

42
42
43
43
44
45
45
93
54
56

59
99
60
62
62
63
63
63
64
64

64
64
66
66
66
66
67
67
69
70
71

14 R

14.1 Installing R oo
14.2 Upgrading R o
143 R Versions o e
14.4 R Version Matching

15 Package Management

15.1 Package Installation L.
15.2 Private Repositorieso L.
15.3 Private Packages oo

16 Historical Information

16.1 Historical Metrics e
16.2 Historical Events

Appendix

A Configuration Options

A.1 Configuration Basics
A2 Server
A3 HTTP e
A4 HTTPS e
A5 HTTPRedirect
A6 Licensing
A.7 Database
A8 SQLite e
A9 Postgres
A.10 Authentication
A1l Password
A120Auth2
A13LDAP e
AT4PAM . . . e
A.15 Proxied Authentication
A.16 Authorization
A7 Applicationso
Ad8Packages.
A19Client e
A.20 Runtime/Schedulero oo
A21 Jobs
A.22 Historical Information
A.23 Load Balancing

B Command-Line Interface

B.1 User Management
B.2 Migration Utility o o

C Using a Custom Landing Page

C.1 Overview o o e
C.2 Configuration
C.3 Custom Landing Page Assets
C4 Example

D LDAP/AD Configuration Examples

D.1 Single Bind
D.2 DoubleBind.

74
(0]
(0]
(0]
(s

78
78
79
80

81
81
81

83

D.3 LDIF e

E RStudio Connect Deployment Guide
E.1 Overview
E.2 Programmatic Deployment e
E.3 Step 1: Building the Bundle o
E.4 Step 2: Push Bundle to Connect
E.5 Step 3: Bundle is deployed on Connecto oo
E.6 Other Frequently Asked Questions

F Using Continuous Integration to Deploy Content
F.1 Overview o e
F.2 Prerequisites e
F.3 Configuring a CI Server to Deploy Content to Connect
F.4 Warning and Security Information o o

G Programmatic Deployment with rsconnect
G.1 OVerview o e
G.2 Use Case: A Shiny Application
G.3 Warning and Security Information oo
G.4 Example Shiny Application

1 Introduction

115
115
115
115
118
119
119

120
120
120
120
122

RStudio Connect allows users to share and collaborate on the results they produce with R such as R Markdown
documents, Shiny applications, Plumber APIs, and plots. Source code or rendered artifacts can be deployed
into RStudio Connect and selectively shared with other viewers and collaborators within the organization.

Some content can even be scheduled to be re-executed and emailed on a given schedule.

RStudio Connect can also help simplify the role of the system administrator tasked with supporting R by

offering:

e Detailed metrics for the server and the associated R processes

e Logs for all R processes spawned by Connect

o Secure deployments and interactions with artifacts using SSL/TLS

e Scale a Shiny application beyond a single R process to support additional visitor load

1.1 System Requirements

RStudio Connect is supported on the following distributions of the Linux operating system:

o Red Hat Enterprise Linux/CentOS Linux 6.0+
o Red Hat Enterprise Linux/CentOS Linux 7.0+
e SUSE Linux Enterprise Server 12 SP3+

o Ubuntu 14.04

o Ubuntu 16.04

» Ubuntu 18.04

We currently only offer installers for the x86-64 architecture and require root privileges both to install and

run Connect.
RStudio Connect can be used with R versions 3.1.0 or higher.

RStudio Connect is supported against the latest versions of the following browsers:

https://www.r-project.org

e Chrome

e Safari

e Firefox

e Internet Explorer 11
e Microsoft Edge

2 Getting Started

This chapter helps you install RStudio Connect on Ubuntu (Section 2.1.3) or Red Hat Enterprise Linux
(Section 2.1.4)/CentOS Linux (Section 2.1.4)/ SUSE Linux Enterprise (Section 2.1.4), learn to manage the
server (Section 5.1), and perform some initial configuration (Section 2.2).

We built this checklist to guide you through that process.

1. Install R - Ubuntu 2.1.3, Red Hat/CentOS/SUSE 2.1.4

2. Download RStudio Connect installer

3. Install RStudio Connect - Ubuntu 2.1.3, Red Hat/CentOS/SUSE 2.1.4,
4. Set Server.SenderEmail - 2.2.1

5. Set Server.Address - 2.2.1

6. Configure Authentication - 2.2.2, 10

7. Restart RStudio Connect - 5.1

8. Sign into RStudio Connect - 2.2.3

9. Configure email sending - 2.2.4
10. Install TensorFlow Dependencies (Optional) - 2.2.5

2.1 Installation
This section explains how to install R on an Ubuntu or Red Hat/CentOS/SUSE server. You must install R
version 3.1.0 or higher.

Administrators should install the versions of R that they wish to support from source so that user content
is run in an environment as close as possible to the development environment. This allows maintenance of
multiple versions of R simultaneously and mitigates the risk associated with updating the version of R.

2.1.1 Package Managers

The best practice is to install R from source rather than with a package manager like apt, yum, or zypper.
Installing R with a package manager means that R will be updated when the package manager update
command is run and a new version is released. Any content that was uploaded and built with the old R
version will need to be rebuilt for the new R version. This is not guaranteed to succeed.

2.1.2 Build R from Source

To build R from source, first, acquire the build dependencies for R.

In Ubuntu, you can install build dependencies with

$ apt-get build-dep r-base

Or determine and install dependencies independently by using the following command:

$ apt-rdepends --build-depends r-base

In RedHat Enterprise Linux and CentOS, you can install build dependencies with

$ yum-builddep R

Or determine and install dependencies independently by using the following command:

$ yum deplist R

In SUSE, build dependencies should be installed directly with zypper install <dependency>. A partial
list of the libraries that you might need is below.

zypper install \
gcec \
gce—c++ \
gcc—fortran \
readline-devel \
xorg-x1ll-devel \
liblzma5 \
xz-devel \
pcre-devel \
libcurl-devel \
make

Second, you should download and unpack the source tarball for the version of R that you want to install
from CRAN. To install R-3.4.3, this might look like the following:

Download and extract source code

$ wget https://cran.r-project.org/src/base/R-3/R-3.4.3.tar.gz
$ tar -xzvf R-3.4.3.tar.gz

$ cd R-3.4.3

The final step is to configure, make, and install R. The recommended install location in this case is at
/opt/R/3.4.3. If you would like to choose a different location, you can change --prefix=. To learn more
about how Connect looks for R installations, see section 14.3.1.
Build R from source
$./configure \

--prefix=/opt/R/$(cat VERSION) \

--enable-memory-profiling \

--enable-R-shlib \

--with-blas \

--with-lapack

$ make
$ sudo make install

It is very important that the R installation folder is not moved once it is installed from source.
Libraries are statically linked, so moving the folder will break the installation of R.

To test that the installation went smoothly, execute:

$ /opt/R/3.4.3/bin/R --version

Once you have R installed on the server, it is important to understand how Connect discovers R and chooses
the R version that an asset will use. Chapter 14 explains more about this process.

2.1.3 Ubuntu (14.04+)

RStudio Connect requires an installation of R version 3.1.0 or higher. See section 2.1.2 for details on installing
R from source.

https://cran.rstudio.com/src/base/

You will use gdebi to install Connect and its dependencies. It is installed via the gdebi-core package.

$ sudo apt-get install gdebi-core

You should have a .deb installer for RStudio Connect. It can be downloaded from the RStudio website. If
you only have a link to this file, you can use wget to download the file to the current directory.

$ wget https://download-url/rstudio-connect_1.6.8.2-12_amd64.deb

Once the .deb file is available locally, run the following command to install RStudio Connect.

$ sudo gdebi rstudio-connect_1.6.8.2-12_amd64.deb

This will install Connect into /opt/rstudio-connect/, and create a new rstudio-connect user.

You can now configure the server following the instructions in Section 2.2.1. However, we recommend that
you consider installing some additional system dependencies that common R packages require. Without these
system dependencies, your users may not be able to use the R packages they require on the server.

Recommended Packages

The following system dependencies are required by many common R packages and nearly all deployments
will need to provide these. These package names may vary slightly between different versions of Ubuntu.

build-essential

libcurl4-gnutls-dev

openjdk-7-* # may require also executing "R CMD javareconf-

libxml2-dev

libssl-dev

texlive-full # very large dependency, but needed to render PDF documents from R Markdown

Supplemental Packages

There are additional system dependencies that may be required for some R packages depending on the types
of R packages your users are leveraging. You could consider providing these packages for your users now, or
wait until they are requested.

libgmp10-dev
libgsl0-dev
libnetcdf6
libnetcdf-dev
netcdf-bin
libdigest-hmac-perl
libgmp-dev
libgmp3-dev
libgll-mesa-dev
libglul-mesa-dev
libglpk-dev
tdsodbc
freetds-bin
freetds-common
freetds-dev
odbc-postgresql
libtiff-dev
libsndfilel
libsndfilel-dev
libtiff-dev
tk8.5

tk8.5-dev
tcl8.5

tcl8.5-dev
libgsl0-dev
libv8-dev

2.1.4 Red Hat Enterprise Linux/SUSE Linux Enterprise (12 SP3+)/CentOS Linux (6.0+)

Prerequisites

RStudio Connect requires an installation of R version 3.1.0 or higher. See section 2.1.2 for details on installing
R from source.

For RedHat/CentOS, Connect has several dependencies on packages (including R itself) found in the Extra
Packages for Enterprise Linux (EPEL) repository. If you don’t already have this repository available, add it to
your system using the instructions found here: https://fedoraproject.org/wiki/EPEL. On some distributions
of Red Hat Enterprise Linux/CentOS Linux, the R package references dependencies that are not available
by default. In this case, you may need to edit the /etc/yum.repos.d/redhat.repo file to enable the
rhel-6-server-optional-rpms (by setting enabled = 1) before you can install the R package.

You can now begin the installation of RStudio Connect. You should have been provided with an RPM
file which contains Connect and all of its dependencies (other than R). You can install this rpm file using
yum/zypper. If you have only a link to the RPM file, you can use wget to download the file to the current
directory.

$ wget https://download-url/rstudio-connect-1.6.8.2-12.x86_64.rpm

For RedHat/CentOS:
$ sudo yum install --nogpgcheck rstudio-connect-1.6.8.2-12.x86_64.rpm

For SUSE:
$ sudo zypper --no-gpg-checks install rstudio-connect-1.6.8.2-12.x86_64.rpm

This will install Connect into /opt/rstudio-connect/ and create a new rstudio-connect user.

You can now configure the server following the instructions in Section 2.2.1. However, we recommend that
you consider installing some additional system dependencies that common R packages require. Without these
system dependencies, your users may not be able to use the R packages they require on the server.

Recommended Packages

The following system dependencies are required by many common R packages and nearly all deployments
will need to provide these. These package names may vary slightly between different versions of Red Hat
Enterprise Linux, CentOS Linux, and SUSE Enterprise Linux.

make

gcc

gcc—c++

libcurl-devel

libxml2-devel

java-1.7.0-openjdk-devel # may require also executing "R CMD javareconf~
openssl-devel

texlive-* # VERY large dependency, but needed to render PDF documents from R Markdown

2.2 Initial Configuration

RStudio Connect is installed, but requires additional configuration before it is ready for use. This section will
help you specify the public URL of your server, configure authentication, and validate that RStudio Connect

https://fedoraproject.org/wiki/EPEL

is able to send email.

2.2.1 Editing the Configuration File

RStudio Connect is controlled by the /etc/rstudio-connect/rstudio-connect.gcfg configuration file.
You will edit this file to make server-wide configuration changes to the system. See the configuration appendix
A for details about this file, its syntax, and the available settings.

Start by setting the SenderEmail and Address server properties. Both must be specified in the Server
section of your configuration file.

The Server.SenderEmail property is the email address from which Connect sends emails. It is important
that the sendmail or SMTP configuration RStudio Connect uses be willing and able to send email from this
SenderEmail address. Otherwise, Connect will not be able to successfully send email. See Section 2.2.4 for
more details about mail sending.

The Server.Address property is the public URL used to access the server. When accessible over a non-
standard port, this URL must specify both hostname and port. This setting enables Connect to include links
in emails that send users to the appropriate location on the server.

The standard HTTP port is 80; the standard HTTPS port is 443.
Important Note

Please use a publicly available URL (like the one you set in Server.Address) when connecting
rsconnect or the RStudio IDE to your RStudio Connect server. If a non- public address (e.g.,
localhost) is used for publishing content, rsconnect will not be able to automatically open the
published content in the user’s browser.

Whenever RStudio Connect is deployed behind a proxy, you must configure the Server.Address setting with
the proxied location. RStudio Connect normally returns URLs that are in terms of its local address. The
Server.Address property causes Connect to use an alternate base location when building URLs. Setting
Server.Address to the location of your proxy will produce URLs in terms of your proxy address instead of
the Connect local address.

Here is a sample configuration specifying both SenderEmail and Address.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]

SenderEmail = rstudio-connect@company.com
Address = https://rstudio-connect.company.com/

Here is a sample configuration with RStudio Connect using a non-standard port:

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]

SenderEmail = rstudio-connect@company.com

Address = http://rstudio-connect.company.com:3939/

This example has RStudio Connect available underneath a specific URL path. You may have this situation
when Connect is accessed through a proxy.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]

SenderEmail = rstudio-connect@company.com
Address = https://proxy.company.com/connect/

Restart RStudio Connect after altering the rstudio-connect.gcfg configuration file.

$ sudo systemctl restart rstudio-connect

Your platform may use alternate commands to restart RStudio Connect. Please see Section 5.1
for instructions specific to your operating system version.

2.2.2 Authentication

It is important that you specify the correct style of authentication for your organization. RStudio Connect
includes a built-in authentication mechanism and supports a number of external authentication integrations,
which are detailed in Section 10.

You must establish the correct form of authentication before using RStudio Connect. Migrating from one
style of authentication to another is NOT SUPPORTED.

2.2.3 Sign In!

Use a web browser to visit the RStudio Connect dashboard. This has a default location of http://
your-connect-server:3939/. Click the “Sign In” link. If you are using an external authentication provider,
specify your login credentials. If you are using password authentication, follow the “Create a new account”
link and configure your account.

The first account will be marked as an RStudio Connect administrator. Please use this account to configure
mail sending. These settings are necessary in order for Connect to be able to distribute reports and notify
users of errors running their content. Connect also sends confirmation messages when using the default
password auth provider.

2.2.4 Email Sending

Visit the RStudio Connect dashboard and sign in as an administrator. Visit the Admin>Settings screen and
configure mail sending for your organization.

RStudio Connect supports two options for sending mail:

e Sendmail - The sendmail command is used to send messages locally on your server. This relies on a
working sendmail configuration or some equivalent replacement.
e SMTP - Mail is sent using an SMTP endpoint and supports SSL and authentication.

Please contact your system administrator if you have questions about which of these options are appropriate.
Be sure to verify your settings by sending a test message!

At this point, RStudio Connect is installed and ready for use. The rest of the administration guide covers
additional configuration options.

2.2.5 Install TensorFlow Dependencies (Optional)

Note: libtensorflow.so is required for TensorFlow Model API deployment support, and an
up-to-date libtensorflow.so is required to run TensorFlow Model APIs at the latest version. If
users are experiencing difficulty deploying TensorFlow Models to RStudio Connect, try updating
libtensorflow.so to the latest version following the instructions below.

To install the TensorFlow dependencies, first verify that your license supports TensorFlow Model API
deployment. If you do not have a Standard or Enterprise license, please contact RStudio Sales for information
on upgrading your license.

10

http://your-connect-server:3939/
http://your-connect-server:3939/

Second, verify that your platform is supported by TensorFlow. TensorFlow requires libraries that are
unavailable on CentOS 6, Red Hat Enterprise Linux 6, and SUSE Linux Enterprise Server 12. Accordingly,
RStudio Connect does not provide support for running TensorFlow Model APIs on these platforms.

Next, determine what version of TensorFlow your users will be deploying their models with. RStudio Connect
supports TensorFlow versions 1.9.0 and earlier. Later releases and development TensorFlow builds are not
supported.

Finally, there are two options for installing the required libraries:

e You could obtain a 1ibtensorflow binary package. This binary package would not be optimized for
your platform, but would provide a working runtime for TensorFlow Model APIs on connect. See 2.2.5.1

¢ You could compile libtensorflow from source. This would allow you to make various compile-time
optimizations for your hardware. See 2.2.5.2

2.2.5.1 TensorFlow Binary Packages

The guide Installing TensorFlow For C should contain a section reading “Download and extract the TensorFlow
C library”. Follow the instructions up to that point, download and extract the binary, and then:

e On Ubuntu, the libraries may need to be installed to /usr/1ib rather than /usr/local/1ib as specified
in the instructions.

e On CentOS7/RHEL7, the libraries need to be installed to /usr/1ib64 rather than /usr/local/lib as
specified in the instructions.

e On ALL PLATFORMS: Ensure that both libtensorflow.so and libtensorflow_framework.so are
in your shared library search path.

2.2.5.2 Compiling TensorFlow Libraries From Source

NOTE: These instructions have been tested as of TensorFlow 1.7, please refer to the TensorFlow
Project for up-to-date information on building TensorFlow Libraries.

NOTE: Compiling TensorFlow from source may be difficult and is highly dependent on your host
environment. If you encounter issues compiling libtensorflow.so from source, you should raise
an issue at the TensorFlow project’s Github Issues Page

1. Install Bazel per the Bazel Installation Instructions

Download the TensorFlow Source either using git clone or by downloading a source tarball.

3. Python, Swig, and NumPy may be required on the build platform. - On Ubuntu, they can be installed
with sudo apt-get install python swig python-numpy - On CentOS, they can be installed with
sudo yum install python swig numpy

4. Enter the source directory and run ./configure. Answer the questions about your hardware to the
best of your knowledge. Application logs will contain a warning if the platform’s tensorflow libraries
lack usable optimizations.

5. Execute bazel build --config opt //tensorflow:libtensorflow.so. This will compile tensorflow
for your platform

6. Copy libtensorflow.so and libtensorflow_framework.so from bazel-bin/tensorflow into your
platform’s shared library path

o

3 License Management

3.1 Capabilities

An RStudio Connect product key limits usage in the following ways:

11

https://www.tensorflow.org/install/install_c
https://github.com/tensorflow/tensorflow/issues
https://docs.bazel.build/versions/master/install.html
https://github.com/tensorflow/tensorflow

e Number of user accounts that have signed into RStudio Connect. Once this limit is reached, additional
users will not be permitted to sign into RStudio Connect. This limit is enforced the first time each user
logs in. Locked users are not counted against this quota. Additionally, users that have not recently
been active on the server are not counted against this quota. Users are deemed “inactive” after 365
days without visiting RStudio Connect, though this value may vary for certain licenses.

e Number of users that can access Shiny applications at one moment in time. If this number is exceeded,
new anonymous users will be unable to view the Shiny application requested. This limitation does not
affect logged in users.

e Whether or not API hosting is supported.

The settings of each metric depends on the license purchased from RStudio.

3.2 Notification of Expiration
RStudio Connect will attempt to send email to administrators when the license key is sixty days from
expiration. You can disable this behavior with the Licensing.ExpirationEmail setting.

The Connect Dashboard will display a notification to admins and publishers when the license is within 15
days of expiration. You can disable this behavior with the Licensing.ExpirationUIWarning setting.

3.3 Product Activation
3.3.1 Activation Basics
When RStudio Connect is first installed on a system it operates in evaluation mode for a period of time and

then subsequently requires activation for continued use.

To determine the current license status of your system you can use the following command:

$ sudo /opt/rstudio-connect/bin/license-manager status
After purchasing a license to RStudio Connect you’ll receive a license key that can be used to activate the
license on a given system.

You can activate your license key with the command:

$ sudo /opt/rstudio-connect/bin/license-manager activate <product-key>
$ sudo systemctl restart rstudio-connect
Note that you need to restart RStudio Connect after activation for licensing changes to take effect.

Your platform may use alternate commands to restart RStudio Connect. Please see Section 5.1
for instructions specific to your operating system version.

If you want to move your license of RStudio Connect to another system you should first deactivate it on the
old system with the command:

$ sudo /opt/rstudio-connect/bin/license-manager deactivate

3.4 Connectivity Requirements

In order to activate or deactivate RStudio Connect, internet connectivity is required for communication with
the licensing server. If your server is behind an internet proxy or not connected to the Internet at all this
section describes what’s required to successfully activate.

Additionally, your server should have a synchronized system clock, using ntp or some other clock syncing
service. If the server’s clock is sufficiently incorrect, licensing verification will fail.

12

3.4.1 Proxy Servers

If your server is behind an internet proxy, you may need to add an additional command line flag indicating the
address and credentials required to communicate through the proxy. This may not be necessary if either the
http_proxy or all_proxy environment variable is defined (these are read and used by the license manager
when available).

If you do need to specify a proxy server explicitly you can do so using the —-proxy command line parameter.
For example:

$ sudo /opt/rstudio-connect/bin/license-manager \
—-proxy=http://127.0.0.1/ activate <product-key>

Proxy settings can include a host-name, port, and username/password if necessary. The following are all
valid proxy configurations:

http://127.0.0.1/
http://127.0.0.1:8080/
http://user:pass@127.0.0.1:8080/

If the port is not specified, the license manager will default to using port 1080.

3.4.2 Offline Activation

If your system has no connection to the Internet it’s also possible to perform an offline activation. To do this,
we recommend using our offline activation application which will walk you through the process: RStudio
Offline Activation

To activate your license offline, you first generate an offline activation request as follows:

$ sudo /opt/rstudio-connect/bin/license-manager \
activate-offline-request <product-key>

Executing this command will print an offline activation request to the terminal which you should copy and paste
and enter into our offline activation application or send to RStudio customer support (support@rstudio.com).
You will receive a reply with a file attachment that can be used to activate offline as follows:

$ sudo /opt/rstudio-connect/bin/license-manager \
activate-offline <activation-file>
$ sudo systemctl restart rstudio-connect

Note that you need to restart RStudio Connect after activation for licensing changes to take effect.

Your platform may use alternate commands to restart RStudio Connect. Please see Section 5.1
for instructions specific to your operating system version.

If you are renewing your license or want to move your license of RStudio Connect to another system you can
also perform license deactivation offline. You can do this as follows:

$ sudo /opt/rstudio-connect/bin/license-manager deactivate-offline
Executing this command will print an offline deactivation request to the terminal which you should copy and

paste and enter into the offline activation application then send to RStudio customer support (support@
rstudio.com).

You can also perform an offline check of your current license status using the following command:

$ sudo /opt/rstudio-connect/bin/license-manager status-offline

13

http://apps.rstudio.com/offline-activation/
http://apps.rstudio.com/offline-activation/
http://apps.rstudio.com/offline-activation/
mailto:support@rstudio.com
http://apps.rstudio.com/offline-activation/
mailto:support@rstudio.com
mailto:support@rstudio.com

3.5 Evaluations
3.5.1 Extending Evaluations

If you are unable to evaluate RStudio Connect during the initial evaluation period, you can obtain a key for
extending the evaluation period from RStudio customer support (support@rstudio.com). Once you have the
key, supply it to the RStudio Connect license manager using the extend-evaluation command.

$ sudo /opt/rstudio-connect/bin/license-manager extend-evaluation <key>

If you are performing the evaluation on a physical machine (not on virtualized hardware or containers)
without a network connection, you may also request an offline evaluation extension key, which does not
require an internet connection. This key may be supplied to the license manager as follows:

$ sudo /opt/rstudio-connect/bin/license-manager extend-evaluation-offline <key>

Note that offline evaluation extension keys are valid only on machines which do not have Internet access and
are not virtualized. For most offline evaluation extensions, you will need to generate an offline evaluation
request (see below for details).

3.5.2 Connectivity Requirements

3.5.2.1 Beginning Evaluations

Generally speaking, there are no network requirements during the evaluation period. Inside virtual machines
or sandboxes (such as Docker), however, Internet access is required to begin the evaluation period.

If you have a proxy, you can supply it using the ——proxy argument as described above. If however you have
no means of connecting to the Internet from inside the virtual environment, you can begin the evaluation as
follows:

$ sudo /opt/rstudio-connect/bin/license-manager begin-evaluation-request

Executing this command will print an offline activation request to the terminal which you should copy and
paste and then send to RStudio customer support (support@rstudio.com). You will receive a reply with a file
attachment that can be used to begin the evaluation offline as follows:

$ sudo /opt/rstudio-connect/bin/license-manager \
begin-evaluation-offline <evaluation-file>
$ sudo systemctl restart rstudio-connect

Note that you need to restart RStudio Connect after starting your offline evaluation for licensing changes to
take effect.

Your platform may use alternate commands to restart RStudio Connect. Please see Section 5.1
for instructions specific to your operating system version.

3.5.2.2 Extending Evaluations

You may extend evaluations offline using the same pattern described above (just use extend-evaluation-request
and extend-evaluation-offline):

$ sudo /opt/rstudio-connect/bin/license-manager extend-evaluation-request

Then, when you’ve received the evaluation file:

$ sudo /opt/rstudio-connect/bin/license-manager
extend-evaluation-offline <evaluation-file>
$ sudo systemctl restart rstudio-connect

14

mailto:support@rstudio.com
mailto:support@rstudio.com

Note that you need to restart RStudio Connect after extending your evaluation for licensing changes to take
effect.

Your platform may use alternate commands to restart RStudio Connect. Please see Section 5.1
for instructions specific to your operating system version.

3.6 Licensing Errors

RStudio Connect uses the license-manager to determine if a valid license is available. Should
an error occur when interacting with the license manager, Connect indicates that problem in the
/var/log/rstudio-connect.log log. The license manager sends details about the error to the system
messages (syslog). You should consult both locations if Connect cannot obtain a license.

3.7 Floating Licenses

If you stop and start RStudio Connect instances frequently, for instance because you’re running them inside
virtual machines or containers, you may wish to use floating licensing instead of traditional licensing.

To use floating licensing, you run a small, lightweight server, which holds a license that grants you the right
to run a certain number of concurrent RStudio Connect instances.

When RStudio Connect starts, it will connect to the license server and obtain a temporary lease, releasing
it when RStudio Connect is stopped. Using this method, you can have any number of RStudio Connect
instances, so long as you do not run more instances at once than specified in your license.

3.7.1 The RStudio Connect License Server

The RStudio License Server site contains license server downloads for all RStudio products. Download and
install the license server for RStudio Connect. You then activate your license key with the command:

$ sudo dpkg -i connect-license-server-1.0.3-x86_64.deb
$ sudo connect-license-server activate <product-key>
$ sudo connect-license-server start

A license key which distributes floating license leases is not the same as a traditional license key, and the two
cannot be used interchangeably. If you have purchased traditional license keys and wish to exchange them for
a floating license key, or vice versa, please get in touch with RStudio customer support (support@rstudio.com).

The file /etc/connect-license-server.conf contains configuration settings for the RStudio Connect
License server, including the network port to listen on and any proxy settings required for connecting to the
Internet.

3.7.2 License Server Offline Activation

The connect-license-server activate command requires an internet connection. If your license server
has no connection to the Internet it’s also possible to perform an offline activation. The process for doing
this on the license server is identical to the process used to activate RStudio Connect offline. Generate an
offline activation request as follows:

$ sudo connect-license-server activate-offline-request <product-key>

15

https://www.rstudio.com/floating-license-servers/
mailto:support@rstudio.com

Executing this command will print an offline activation request to the terminal which you should copy and
paste and then send to RStudio customer support (support@rstudio.com). You will receive a reply with a file
attachment that can be used to activate offline as follows:

$ sudo connect-license-server activate-offline <activation-file>
$ sudo connect-license-server restart

3.7.3 Using Floating Licensing

Once your license server is up and running, you need to tell RStudio Connect to use floating licensing instead
of traditional licensing.
/etc/rstudio-connect/rstudio-connect.gcfg

; /etc/rstudio-connect/rstudio-connect.gcfg
[Licensing]
LicenseType = remote

The value remote indicates that RStudio Connect should connect to a remote licensing server to obtain a
license; the value local can be used to explicitly specify traditional (local) activation.
Then, tell RStudio Connect which licensing server to connect to:

$ sudo /opt/rstudio-connect/bin/license-manager license-server <server-hostname-or-ip>
$ sudo systemctl restart rstudio-connect

Note that you need to restart RStudio Connect after configuring a remote license server for licensing changes
to take effect.

Your platform may use alternate commands to restart RStudio Connect. Please see Section 5.1
for instructions specific to your operating system version.

You only need to run the license-server command once; RStudio Connect saves the server name and will
use it on each subsequent startup.

By default, the RStudio Connect License Server listens on port 8999. If you wish to use a different port, you
will need to specify the port in /etc/connect-license-server.conf, and specify license-server to the
license manager as <server-hostname-or-ip:port>.

Depending on your system configuration, it is possible that the RStudio Connect service will be started before
the service which allows hostname resolution (this is known to be the case for example on some Amazon EC2
systems). If this is the case, you'll want to specify the license server using a private IP address rather than a
hostname, so that RStudio Connect can acquire a license immediately when starting up.

3.7.4 Configuring License Leases

When using floating licenses, you can optionally determine how long the license leases last by setting the
lease length value on the licensing server. This value is in seconds, so for instance to make license leases
last 30 minutes you would use the following syntax:

/etc/connect-license-server.conf

<lease length="1800"/>

The lease length controls how frequently the RStudio Connect instances need to contact the licensing server
to renew their license leases in order for the lease to remain valid.

16

mailto:support@rstudio.com

A shorter lease length will increase tolerance to failures on RStudio Connect instances by making leases
available for reuse more quickly. RStudio Connect will release its lease immediately if shut down normally,
but if abnormally terminated, the lease will not be released until it expires.

A longer lease length will increase tolerance to transient failures on the network and the RStudio Connect
License Server. Any such issues that can be resolved before the lease is due for renewal won’t interrupt use of
RStudio Connect.

We generally recommend using a longer lease length. Use a short lease length only if your environment
routinely encounters abnormal terminations of the server or the container/instance on which it runs.

3.7.5 Lease Expiration and Renewal

Under normal conditions RStudio Connect will automatically renew its license lease in a configurable interval
as described above. However, there are situations in which it will be unable to do so, such as a network
problem, or an issue on the host running the license server.

When RStudio Connect cannot obtain a license lease, either because there are no leases currently available or
because it can’t reach the licensing server, it will begin automatically attempting to acquire a lease every
10 seconds. This interval is configurable; for instance, to retry every 30 seconds instead you would set the
following value:

/etc/rstudio-connect/rstudio-connect.gcfg

; /etc/rstudio-connect/rstudio-connect.gcfg
[Licensing]
RemoteRetryFrequency = 30s

If you don’t want RStudio Connect to attempt to reestablish a license lease automatically, set the value to 0
to disable retries. In this case you will need to manually restart RStudio Connect in order to reestablish
the lease. This can be useful if you often run more instances than you have keys for, and wish to have more
control over which RStudio Connect instances receive license leases from the limited pool on the license
server.

3.7.6 Troubleshooting Floating Licensing

To validate that the license server has been successfully activated, run the activation-status command.
This will report the version of the server as well as the license key and the number of available slots.

$ sudo connect-license-server activation-status

If your server is activated but you’re still having trouble with floating licensing, you can tell the RStudio
Connect License Server to emit more detailed logs. Change the log level to notification:

/etc/connect-license-server.conf

<log file="/var/log/rstudio-licensing.log" level="notification"/>

Then, restart the license server, tail the licensing log, and start your RStudio Connect instances.

$ sudo connect-license-server restart
$ tail -f /var/log/rstudio-licensing.log

At the notification level, the licensing log will tell you the total number of licenses associated with your
key, and how many are currently in use. It will also notify you when RStudio Connect instances acquire leases,
and when those leases are released, renewed, or expired. No rotation is done for this log, so it’s recommended
to use the warning level in production.

17

4 Files & Directories

4.1 Program Files

The RStudio Connect installers place all program files into the /opt/rstudio-connect directory.

You should not need to change any files in the /opt/rstudio-connect hierarchy. Any alterations will be
overwritten by subsequent re-installs or upgrades of RStudio Connect.

4.2 Configuration

The RStudio Connect configuration file is /etc/rstudio-connect/rstudio-connect.gcfg. This file is
initially owned by root with permissions 0600. You will edit this file to properly configure RStudio Connect
for your organization.

A configuration management tool like Puppet or Chef can be used to maintain the rstudio-connect.gcfg
file. We recommend that it remain owned by root and have permissions 0600, as your configuration may
need to contain passwords and other sensitive information.

RStudio Connect upgrades will not overwrite customizations to the rstudio-connect.gcfg file. Similarly,
the initial installation of RStudio Connect will not overwrite the rstudio-connect.gcfg file if it already
exists.

Restart RStudio Connect after altering the rstudio-connect.gcfg configuration file using the instructions
in Section 5.1.

Configuration settings marked as “reloadable” do not require a full restart. See Section A to learn
which properties are reloadable. You can find a “reload” command for your operating system in
Section 5.1.

4.3 Server Log

The RStudio Connect server log is located at /var/log/rstudio-connect.log. This file is owned by root
with permissions 0600.

If logrotate is available when RStudio Connect is installed, a logrotate configuration will be installed.
The default configuration is to rotate the logfile daily. The old log file will be stored alongside the original
with a numeric extension, .1, .2, etc. The rotated log files are compressed after one day. The .1 log file is
retained uncompressed, but older logs are compressed. Most systems use gzip for compression, giving log
files with extensions like .2.gz, .3.gz. Logs will be maintained for 30 days.

The manual for logrotate has more information.

4.4 Access Logs

The RStudio Connect HTTP access logs are located at /var/log/rstudio-connect.access.log. This
file is owned by root with permissions 0600. Log files are stored in Apache Combined Log Format. See
http://httpd.apache.org/docs/2.2 /logs.html#combined for a description of this format.

If logrotate is available when RStudio Connect is installed, a logrotate configuration will be installed.
The default configuration is to rotate the logfile daily. The old logfile will be compressed and stored alongside
the original log file with a .1.gz extension (then .2.gz, etc.). Logs will maintained for 30 days.

18

https://puppetlabs.com
https://www.chef.io/chef/
http://httpd.apache.org/docs/2.2/logs.html#combined

4.5 Application Logs

Each R process launched by RStudio Connect produces output that is retained within the jobs subdirectory
of the RStudio Connect data directory (see Section 4.6 for details). These directories and files are managed
by the server. They are retained for 30 days and subsequently removed from the system.

Application logs are available in the RStudio Connect dashboard. The dashboard settings page for deployed
content contains a Logs section containing execution details for each launched R process. Standard output
and standard error are captured and available.

4.6 Variable Data

RStudio Connect manages uploaded Shiny applications, Plumber APIs, R Markdown documents, and plots.
All of the variable data associated with this content is stored within the server’s data directory. This includes:

e Deployment bundles as uploaded by the user.

o Directories containing unpacked bundles, including R source code.
e R packages, as demanded by the deployed code.

o Rendered R Markdown documents.

The RStudio Connect data directory also contains information used by the server in managing your deployed
content. This includes:

e The RStudio Connect SQLite database and encryption key.
e R process execution information including logged output.
e Parameter overrides for R Markdown documents.

The default location for the RStudio Connect data directory is /var/1ib/rstudio-connect. This can be
customized by specifying an alternate DataDir in the Server section of your configuration file.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]
DataDir = /mnt/rstudio-connect

The RStudio Connect SQLite database must exist on local storage. If the location for DataDir is not local
storage but a networked location over NFS, configure the Dir setting in the SQLite section of your server
configuration file.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]
DataDir = /mnt/rstudio-connect

[SQLite]
Dir = /var/lib/rstudio-connect/db

4.6.1 Permissions

Data directory permissions are established by RStudio Connect as files are created. This section documents
the general ownership patterns you will find under the RStudio Connect data directory.

Directories directly accessed from R applications will usually be owned by the Applications.RunAs user.
This setting defaults to use an rstudio-connect account created during RStudio Connect installation. The
rstudio-connect account has a default primary group also named rstudio-connect. We use the account
and group name rstudio-connect throughout this section instead of referencing the property name.

Directories used during metrics collection are owned by the rstudio-connect user (customizable via the
Metrics.User setting).

19

Learn more about customizing metrics collection in Section 16.1.1.
Directories not accessed by R applications or by the monitoring system will be owned by root.
/var/lib/rstudio-connect is owned by root with permissions 0701.

The R subdirectory contains R packages used when content is deployed. The entire R directory hierarchy needs
to be owned by rstudio-connect. Files must have 0600 permissions and directories need 0700 permissions.

The packrat subdirectory contains R packages installed on behalf of deployed content. These packages are
installed when content is deployed and subsequently used when an application or report executes. The entire
packrat directory hierarchy needs to be owned by the rstudio-connect and the rstudio-connect group.
Files must have 0640 permissions while directories need 0750 permissions.

The reports subdirectory is owned by root with 0711 permissions. This contains generated output for
report content deployed with source. The reports tree contains a nested directory structure of the form:
v2/A_ID/V_ID/R_ID. The A_ID directory corresponds to a content deployment (an R Markdown document).
The V_ID directory represents a configuration of that document (a set of parameter values). The R_ID
contains a single rendering of that document with the associated parameters. The directories v2, A_ID, and
V_ID are all owned by root with 0711 permissions. The final directory, R_ID contains the actual rendered
output and is owned by rstudio-connect with 0700 permissions. Files contained in the R_ID directory will
have 0600 permissions.

The bookmarks directory contains a bookmarking state subdirectory for each Shiny application. The top-
level directory is owned by root with 0711 permissions. Each bookmarks/A_ID subdirectory is owned by
rstudio-connect and the rstudio-connect group with 0770 permissions.

Learn more about server-stored Shiny bookmarking state in this article.

The apps directory contains directories for each deployment. The top-level directory is owned by root with
0711 permissions. The first level of the apps hierarchy is a directory for each content deployment. These
apps/A_ID directories are owned by rstudio-connect with 0700 permissions.

Beneath each apps/A_ID directory is a set of directories for each deployed bundle. The ownership and
permissions for this hierarchy depend on whether or not the content is configured with a custom RunAs setting.
Without a custom RunAs setting, permissions are simple: owned by rstudio-connect with directories having
0700 and files having 0600 permissions.

Learn more about using a custom RunAs in Section 12.5.

RStudio Connect needs a more complicated permission structure when content is configured with a custom
RunAs setting. This is because the rstudio-connect user (Applications.RunAs) is used to install the
necessary packages while the content-specific custom RunAs is used when running the deployed R code. The
apps/A_ID/B_ID directory and reports/v2/A_ID/V_ID/R_ID directories are owned by the custom RunAs
with group ownership set to rstudio-connect. Permissions on this directory are 0750. The packrat
subdirectory is owned by rstudio-connect with group ownership of rstudio-connect. File permissions on
this directory and its sub-directories are 0750 while files have 0640 permissions. Other than the packrat
directory, all files underneath apps/A_ID/B_ID and reports/v2/A_ID/V_ID/R_ID have 0600 permissions
and directories are given 0700.

All other data subdirectories are owned by root with 0700 permissions.

4.7 Backups

We recommend including the RStudio Connect configuration file in /etc/rstudio-connect as well as the
variable data directory which defaults to /var/lib/rstudio-connect in your system backups. If you have
configured the database to be stored outside the data directory, ensure that it is also included in the backup.

A running RStudio Connect server may be writing into the data directory if there are any active deployments,
applications or documents. You should stop the RStudio Connect server before taking a backup.

20

https://shiny.rstudio.com/articles/bookmarking-state.html

$ sudo systemctl stop rstudio-connect
Run appropriate backup steps here.
$ sudo systemctl start rstudio-connect

4.8

Your platform may use alternate commands to restart RStudio Connect. Please see Section 5.1
for instructions specific to your operating system version.

Server Migrations

There are a number of factors that must be considered before migrating your RStudio Connect installation
from one server to another. We recommend making as few changes as possible during the initial migration.
If, for instance, you will be migrating to a new server, upgrading to a new default version of R, and altering
the default Applications.RunAs user, complete the migration first. Then upgrade R and alter the RunAs
user in subsequent steps.

In order to migrate a server, you will follow the same steps as when you perform a backup in order to obtain
a consistent copy of the data in the necessary directories. These directories can then be copied to the new
server.

1.

Install RStudio Connect on the new server, then stop the service. RStudio Connect v1.5.6 introduced
features that make server migrations more reliable; migrating servers in older versions is not supported,
so the new server should have v1.5.6 or later.

Mirror the Unix accounts used by RStudio Connect on the existing server to the new server. Consider
the Applications.RunAs user and any other users that might have been selected as the user responsible
for running any content on the server. These Unix accounts must all exist on the new server and
continue to be members of the default Applications.RunAs user’s primary group as discussed in 12.5.
Copy the config and data directories while preserving the permissions and file ownership. Not all file
transfer clients are able to preserve these attributes, so consider using rsync with the -a flag to copy
the data. Bear in mind that certain applications may have overridden settings that alter how their files
are stored on disk (for instance, by customizing the user account that runs their R processes), so it is
critical that ownership and permissions be preserved exactly during the migration.

. Update your /etc/rstudio-connect/rstudio-connect.gcfg file if you've changed settings like the

path to your data directory.

Sanity-check the permissions and ownership of the content working directories using the migrate
repair-content-permissions command as documented in B.2.

Install the same version(s) of R on the new server to mimic existing behavior. If you need additional
versions or support for multiple versions of R, please see 14.

On the new server, install any system dependency that may be used by an R package on the existing
server. A list of recommended packages are available in 2.1. Whichever packages you chose to install
on your existing server to support the R packages that users have deployed should also be installed on
the new server. Otherwise, RStudio Connect will not be able to rebuild users’ deployed packages.
Run migrate rebuild-packrat --force to delete the Packrat cache and rebuild it. This cache likely
includes binaries that were compiled against particular versions of libraries on your existing system. Be
aware that this step may take a very long time (easily multiple hours for large deployments with
lots of content). It is recommended you start this before you start RStudio Connect, but you can start
RStudio Connect once it starts. If any application or report is executed, the packrat directory for that
application will be rebuilt at runtime.

If you are also migrating to a different database provider, see 9.3.

5

Server Management

This section describes common administrative tasks for RStudio Connect.

21

5.1 Stopping and Starting

Occasionally it is necessary to start and stop the RStudio Connect service. Stopping and starting is handled
by systemd or Upstart. On stop/start or restart the following occurs:

Stop:

e The RStudio Connect process is stopped.

e R processes serving Shiny applications and Plumber APIs are stopped.

e R processes rendering R Markdown documents run through completion.

e In-progress deployments will fail. R processes running as part of the deployment may run to completion.

Start:

e RStudio Connect process is resumed.
« Shiny applications and Plumber APIs with a minimum number of R processes are started.
e Scheduled R Markdown updates missed during system downtime are run at most once.

The specific stop/start commands depend on the service dameon. Commands for systemd and Upstart are
listed below.

5.1.1 systemd

Distributions using systemd include Red Hat/CentOS 7, SUSE 12, Ubuntu 16.04, and Ubuntu
18.04.

systemd is a management and configuration platform for Linux. The newest versions of most major Linux
distributions have adopted systemd as their default init system.

The RStudio Connect installer installs a systemd service called rstudio-connect, which causes the connect
program to be started and stopped automatically when the machine boots up and shuts down. The
rstudio-connect service is also automatically launched during installation.

Use the following commands to manually start and stop the server:

$ sudo systemctl start rstudio-connect

$ sudo systemctl stop rstudio-connect

You can restart the server with:

$ sudo systemctl restart rstudio-connect

You can trigger a configuration reload with the systemctl reload command, which reads the changed
configuration from disk:

$ sudo systemctl reload rstudio-connect
This causes the server to re-initialize but does not interrupt the current processes or any of the open
connections to the server.

Use systemctl reload to send a HUP signal when your configuration changes are limited to
properties marked as “reloadable”. See Appendix A to learn which settings may be reloaded.
Perform a full restart of RStudio Connect when changing other properties.

You can check the status of the rstudio-connect service using:

$ sudo systemctl status rstudio-connect

And finally, you can use the enable/disable commands to control whether Connect should be run automat-
ically at boot time:

22

$ sudo systemctl enable rstudio-connect

$ sudo systemctl disable rstudio-connect

5.1.2 Upstart (Ubuntu 14.04, Red Hat 6)

Distributions using systemd include Red Hat/CentOS 6 and Ubuntu 14.04.

Upstart is a system used to automatically start, stop and manage services. The installer writes an Upstart
configuration file to /etc/init/rstudio-connect.conf. This instructs the Upstart to initialize RStudio
Connect as soon as the network is activated on the machine and stop when the machine is being shut down.

The Upstart configuration also ensures that the connect process is respawned if the process unexpectedly
terminates. However, in the event that there is an issue which consistently prevents RStudio Connect from
being able to start (such as a bad configuration file), Upstart will give up on restarting the service after
approximately 5 failed attempts within a few seconds. For this reason, you may see multiple repetitions of a
bad RStudio Connect startup attempt before it transitions to the “stopped” state.

To start or stop the server, run the following commands, respectively.

$ sudo start rstudio-connect

$ sudo stop rstudio-connect

To restart the server you can run:
$ sudo stop rstudio-connect
$ sudo start rstudio-connect

The restart command re-initializes the server.

We recommend stop and start over restart because some configuration changes are not
incorporated into a restart. In particular, restart does not re-read the Upstart definition
at/etc/init /rstudio-connect.conf. Changes to this file need astopandstart’ to take effect.

You can trigger a configuration reload with the reload command, which reads the changed configuration
from disk:

$ sudo reload rstudio-connect

This causes the server to re-initialize but does not interrupt the current processes or any of the open
connections to the server.

Use reload to send a HUP signal when your configuration changes are limited to properties marked
as “reloadable”. See Appendix A to learn which settings may be reloaded. Perform a full restart
of RStudio Connect when changing other properties.

To check the status or retrieve the process ID associated with rstudio-connect, run the following:

$ sudo status rstudio-connect

5.2 System Messages

Administrators can add a message to the RStudio Connect welcome page and content page.

Messages are set in the /etc/rstudio-connect/rstudio-connect.gcfg file. Server.PublicWarning de-
fines the message for the welcome page. Server.LoggedInWarning defines the message for the content page.
The messages are supplied as HTML snippets. For example:

23

; /etc/rstudio-connect/rstudio-connect.gcfg

[Server]
PublicWarning = "Warning: Scheduled downtime this weekend."
LoggedInWarning = "Data Science Team Meeting Tomorrow"

Messages can be added or modified without restarting the connect service. After adding the message property
to the config file, use the reload commands for systemd (Red Hat/CentOS 7, SUSE 12, Ubuntu 16.04, and
Ubuntu 18.04):

sudo systemctl reload rstudio-connect

or Upstart (Ubuntu 14.04, Red Hat 6):

sudo reload rstudio-connect

5.3 Health-Check

RStudio Connect provides a simple health-check endpoint that can be used to test if Connect is up/listening.
Point your browser to myserveraddress:myserverport/__ping__, which returns an empty JSON response
and an HTTP 200 status.

curl -I -X GET http://myserveraddress:myserverport/__ping__

5.4 Upgrading

Upgrading RStudio Connect requires limited downtime. Scheduled R Markdown documents are not interrupted.
Connections to running Shiny applications and Plumber APIs are closed. We recommend upgrading during a
period of downtime. Users can be warned ahead of an upgrade with system messages.

The RStudio Connect version number is visible on the lefthand navigation pane. The latest version is available
on the download page along with release notes.

To upgrade:
1. Download the latest .rpm or .deb file
2. Run the install command:
Ubuntu: bash sudo gdebi <rstudio-connect-version.deb>
Red Hat/CentOS: bash sudo yum install --nogpgcheck <rstudio-connect-version.rpm>
SUSE: bash sudo zypper --no-gpg-checks install <rstudio-connect-version.rpm>

The new version of RStudio Connect will install on top of an earlier installation. Existing configuration
settings are respected. During installation the RStudio Connect service is restarted. Total downtime is less
than 10 minutes.

5.5 Purging RStudio Connect

You can fully remove RStudio Connect and all its data from your server using the following steps:
1. Stop the RStudio Connect service. (See 5.1 for details)
2. Uninstall the RStudio Connect package from your system.
Ubuntu: bash sudo apt-get purge rstudio-connect

Red Hat/CentOS: bash sudo yum remove rstudio-connect

24

SUSE: bash sudo zypper remove rstudio-connect
3. Remove logs from /var/log/rstudio-connectx*
4. Purge the database

e When using SQLite, remove the SQLite.Dir directory. This has a default location of
/var/lib/rstudio-connect/db.

e When using PostgreSQL, drop the database used by Connect. You may also wish to remove the
PostgreSQL user associated with Connect.

5. Remove the Server.DataDir directory. By default, this is /var/1ib/rstudio-connect.

6. Remove configuration files from /etc/rstudio-connect if they still exist.

5.6 Docker

Some organizations are starting to deploy RStudio Connect within a Docker container. Connect will manage
and run your R processes within that container. This section describes the requirements for a container-based
deployment.

If you are using multiple Docker containers to run RStudio Connect, Section 6 contains requirements for a
load-balanced, multi-host configuration.

Please contact the RStudio Solutions Engineering team (sol-eng@rstudio.com) for guidance deploying RStudio
Connect into your particular environment.

5.6.1 Distributions

RStudio Connect is supported on the Linux distributions given in Section 1.1. Docker-based deployments
need to use one of these operating systems.

5.6.2 R

R version 3.1.0 or higher must be installed within your Docker container. We recommend installing a curated
set of R versions from source rather than using R installed by a package manager. The instructions in Section
2.1.2 contain the commands you will use to install R when building a Docker image.

5.6.3 Privileged containers

RStudio Connect runs processes within an “unshare” environment using bind mounts as described in Section
12.1. These bind mounts help Connect hide and isolate parts of the filesystem from executed user processes.
Bind mounts are not permitted when running within an unprivileged container.

Docker containers are allowed mount permissions with the SYS_ADMIN capability. You can give these
permissions to your container using either the --cap-add=SYS_ADMIN or --privileged=true option.

Learn more about Linux capabilities and CAP_SYS_ADMIN in the capabilities man page.

The Docker container running RStudio Connect must be started with either --cap-add=SYS_ADMIN or
--privileged=true.

25

mailto:sol-eng@rstudio.com
http://man7.org/linux/man-pages/man7/capabilities.7.html

5.6.4 Licensing

We recommend using a floating license server and having RStudio Connect use that license server. Section
3.7) explains how to obtain and configure the license server as associating RStudio Connect with the floating
license server.

Please contact the RStudio Solutions Engineering team (sol-eng@rstudio.com) if your organization is unable
to run a persistent floating license server.

5.6.5 Storage

Mount a persistent storage location into the Docker container and configure that location as your
Server.DataDir. Do not mount this to the default /var/lib/rstudio-connect location. See Section 4.6
for more information on the variable data managed by RStudio Connect.

5.6.6 Database

The default SQLite database provider may be used when RStudio Connect runs inside a single Docker
container and your Server.DataDir is a mounted volume that is NOT part of a networked (NFS) share.

You must use PostgreSQL in all multiple-container deployments or if your persistent storage location is a
networked location.

5.6.7 Examples

This section contains an rstudio-connect.gcfg configuration file and Dockerfile that will help get you
started building your own environment.

With the Dockerfile and rstudio-connect.gcfg files in a directory, you can build a Docker image tagged
with rstudio/connect-docker:latest with the command:

docker build -t rstudio/connect-docker .
Once the image is built, it can be run with the command:

docker run -d --privileged=true --rm \
-p :9999:3939 \
-v $(pwd)/data:/data \
rstudio/connect-docker:latest

This launches RStudio Connect within a Docker container. The Connect instance is available on port :9999
(published from :3939 within the container). This sample mounts the ./data directory as our persistent
storage and will need updating for your environment.

5.6.7.1 Configuration

This rstudio-connect.gcfg file is copied into the Docker image by a COPY command in the Dockerfile
that follows. This file is only an initial configuration and will need customization for your organization.

; /etc/rstudio-connect/rstudio-connect.gcfg

; RStudio Connect sample configuration

[Server]

; SenderEmail %s an email address used by RStudio Connect to send outbound

; ematl. The system will not be able to send administrative email until this
; setting is configured.

26

mailto:sol-eng@rstudio.com

SenderEmail = account@company.com

; The public URL to this RStudio Connect container. This might the address for
; a proxy or the host running the Docker container.
Address = https://rstudio-connect.company.com

; The persistent data directory mounted into our container.
DataDir = /data

[Licensing]
LicenseType = remote

; Use and configure our PostgreS(L database.
[Database]
Provider = postgres

[Postgres]
URL = "postgres://username:password@db.company.com/connect"

[HTTP]
; RStudio Connect will listen on this network address for HITP connections.
Listen = :3939

[Authentication]
; Specifies the type of user authentication.
Provider = password

5.6.7.2 Dockerfile

Here is a very simple Dockerfile that can be used to run RStudio Connect within a Docker container. This
simple example uses apt-get to install r-base from the Ubuntu 18.04 (bionic) repository.

RStudio Connect sample Dockerfile
FROM ubuntu:bionic

R from Ubuntu + necessary tools.
RUN export DEBIAN_FRONTEND=noninteractive && \
apt-get update && \
apt-get install -y \
curl \
gdebi-core \
r-base

ARG CONNECT_VERSION=1.6.8.2-12
ARG CONNECT_URL_BASE=https://s3.amazonaws.com/rstudio-connect
ARG CONNECT_PACKAGE=rstudio-connect_${CONNECT_VERSION}_amd64.deb
ARG CONNECT URL=${CONNECT URL_BASE}/${CONNECT PACKAGE}
RUN curl -sL -o rstudio-connect.deb ${CONNECT_URL} && \

gdebi -n rstudio-connect.deb && \

rm rstudio-connect.deb

Copy our configuration over the default install configuration
COPY rstudio-connect.gcfg /etc/rstudio-connect/rstudio-connect.gcfg

27

Use a remote license server issuing floating licenses
RUN /opt/rstudio-connect/bin/license-manager license-server licensing.company.com

Expose the configured listen port.
EXPOSE 3939

Launch Connect.
CMD /opt/rstudio-connect/bin/connect \
--config /etc/rstudio-connect/rstudio-connect.gcfg

Install R from source (see Section 2.1.2) by updating that Dockerfile with the following:

Install dependencties needed to build R from source + mecessary tools.
RUN export DEBIAN_FRONTEND=noninteractive && \

apt-get update && \

apt-get install -y curl gdebi-core && \

apt-get build-dep -y r-base

Fetch and install R
ARG R_VERSION=3.4.3
ARG R_ARCHIVE=R-${R_VERSION}.tar.gz
ARG R_URL=https://cran.r-project.org/src/base/R-3/${R_ARCHIVE}
RUN curl -sL -0 ${R_URL} && \
tar zxf ${R_ARCHIVE} && \
cd R-${R_VERSION} && \
./configure \
--prefix=/opt/R/${R_VERSION} \
--enable-memory-profiling \
--enable-R-shlib \
--with-blas \
--with-lapack && \
make && make install && \
cd .. && \
rm -r R-${R_VERSION}

This snippet installs only a single R version but may be extended to install a number of different R versions.

Learn more about how RStudio Connect can use multiple R installations in Section 14.

Your organization may have a shared volume containing all of the available R installations. You could
mount those installations into the container as it is started. This sample command mounts a shared
/shared/software/R location into the well-known /opt/R location within the container:

docker run -d --privileged=true --rm \
-p :9999:3939 \
-v $(pwd) /data:/data \
-v /shared/software/R:/opt/R \
rstudio/connect-docker:latest

6 High Availability and Load Balancing

Multiple instances of RStudio Connect can share the same data in highly available (HA) and load-balanced
configurations. We refer to these configurations as “HA” for brevity.

28

6.1 HA Checklist

Follow the checklist below to configure multiple RStudio Connect instances for HA:

1. Install and Configure the same version of RStudio Connect on each node - 2

2. Migrate to a PostgreSQL database (if running SQLite) - 9.3. All nodes in the cluster must use the
same PostgreSQL database.

3. Configure each server’s Server.DataDir to point to the same shared location - 4.6 and 6.2.4

4. If the Database.Dir setting has been customized, ensure that it points to a consistent, shared location
on each server - 4.6 and 6.2.4

5. Configure each server’s Server.LandingDir to point to the same shared location (if using a custom
landing page) - C and 6.2.4

6. Configure each server’s Metrics.DataPath directory to point to a unique-per-server location - A.22.
Alternatively, you may also wish to consider using Graphite to write all metrics to a single location -
6.2.5

7. Update each server’s configuration with LoadBalancing.EnforceMinRsconnectVersion = true to
ensure that your clients use a compatible version of rsconnect - 6.2.7

8. Configure your load balancer to route traffic to your RStudio Connect nodes with sticky sessions - 6.2.7

6.2 HA Limitations
6.2.1 Clock Synchronization
All nodes in an RStudio Connect HA Configuration MUST have their clocks synchronized, preferably using

ntp. Failure to synchronize system clocks between nodes can lead to undefined behavior, including loss of
data.

6.2.2 Node Management
RStudio Connect nodes in a HA configuration are not self-aware of HA. The load-balancing responsibility is

fully assumed by your load balancer, and the load balancer is responsible for directing requests to specific
nodes and checking whether nodes are available to accept requests.

6.2.3 Database Requirements

RStudio Connect only supports HA when using a PostgreSQL database. If you are using SQLite, please
switch to PostgreSQL. See 9.3.

6.2.4 Shared Data Directory Requirements
RStudio Connect manages uploaded content within the server’s data directory. This data directory must

be a shared location, and each node’s Server.DataDir must point to the same shared location. See 4.6 for
more information on the server’s data directory. We recommend and support NFS version 3 for file sharing.

If you configure Database.Dir (not required), this also must point to the same shared location.

6.2.5 Metrics Requirements

By default, RStudio Connect writes metrics to a set of RRD files. We do not support metrics aggregation,
and each server must maintain a separate set of RRD files to avoid conflicts. The admin dashboard for

29

a specific node will only show metrics for that node. See A.22 for information on configuring a unique
Metrics.DataPath for each server

RStudio Connect includes optional support for writing metrics to Graphite. If you wish to aggregate
metrics, consider using Graphite or any monitoring tool compatible with Carbon protocol. See 16.1 for more
information.

6.2.6 Shiny Applications

Shiny applications depend on a persistent connection to a single server. Please configure your load-balancer
to use cookie-based sticky sessions to ensure that Shiny applications function properly when using HA.

6.2.7 rsconnect Cookie Support

For cookie-based sticky session support, you will need to ensure that your clients use rsconnect version 0.8.3
or later. Versions of rsconnect prior to 0.8.3 did not include support for cookies. Please update each server’s
configuration with the LoadBalancing.EnforceMinRsconnectVersion = true setting to ensure that clients
must use a version of rsconnect with cookie support.

If you cannot enforce a minimum rsconnect version, you can consider alternatives like:

e Non-cookie-based sticky sessions, or

e Providing a separate host name for deployment from rsconnect to a single node in the cluster. Content
deployed to a specific node will be available to the cluster assuming the database and shared storage
are appropriately configured.

6.3 Updating HA Nodes

When applying updates to the RStudio Connect nodes in your HA configuration, you should follow these
steps to avoid errors due to an inconsistent database schema:

1. Stop all RStudio Connect nodes in your cluster.

2. Upgrade one RStudio Connect node. The first update will upgrade the database schema (if necessary)
and start RStudio Connect on that instance - 5.4.

3. Upgrade the remaining nodes.

If you forget to stop any RStudio Connect nodes while upgrading another node, these nodes will be using a
binary that expects an earlier schema version, and will be subject to unexpected and potentially serious errors.
These nodes will detect an out-of-date database schema within 30 seconds and shut down automatically.

6.4 Downgrading

If you wish to move from an HA environment to a single-node environment, please follow these steps:

1. Stop all Connect services on all nodes
2. Reconfigure your network to route traffic directly to one of the nodes, unless you wish to continue using
a load balancer.
3. If you wish to move all shared file data to the node, then
1. Configure the server’s Server.DataDir to point to a location on the node, and copy all the data
from the NF'S share to this location - 4.6
2. If using a custom landing page, configure the server’s Server.LandingDir to point to a location
on the node, and copy the custom landing page data from the NFS share to this location - C
3. Configure the server’s Metrics.DataPath directory to point to an appropriate location. If necessary,
copy the data from the NFS share to this location. - 6.2.5

30

4. If you wish to move the database to this node, install PostgreSQL on the node and copy the data.
Moving the PostgreSQL database from one server to another is beyond the scope of this guide. Please
note that we do not support migrating from PostgreSQL back to SQLite.

5. Start the Connect process - 5.1

6.5 HA Details
6.5.1 Concurrent Scheduled Document Rendering
The Applications.ScheduleConcurrency configuration setting specifies the number of scheduled jobs that

can run concurrently on a host. By default, two scheduled jobs can run simultaneously.

Hosts with substantial processing power can increase this setting. This can be helpful if your environment
has many long-running reports.

A particular host can disable processing of scheduled jobs by setting Applications.ScheduleConcurrency
to zero.

[Applications]
ScheduleConcurrency = 0O
Note: No schedule job will execute if every host sets Applications.ScheduleConcurrency to

Zero.

The Applications.ScheduleConcurrency setting does not affect ad-hoc rendering requests, hosted APIs,
or Shiny applications.

6.5.2 Concurrent Shiny Applications and Ad-Hoc Rendering

Fach R process associated with Shiny applications, hosted APIs, ad-hoc rendering requests, and bundle
deployments runs on the server where the request was initiated. We depend on your load balancer to
distribute these requests to an appropriate Connect node. The minimum and maximum process limits for
Shiny applications are enforced per server. For example, if a Shiny application allows a maximum of 10
processes, a maximum of 10 process per server will be enforced. See A.20 for more information.

6.5.3 Polling

RStudio Connect nodes poll the data directory for new scheduled jobs:

e Every 5 seconds, and
o After every completed scheduled job.

6.5.4 Abandoned R Processes
While processing a scheduled job, the RStudio Connect node periodically updates the job’s metadata in the
database with a “heartbeat”. If the node goes offline and the “heartbeat” ceases, another node will eventually

claim the abandoned job and run it again. Hence, if a server goes offline or the Connect process gets shut
down while a scheduled report is running, it is possible that the scheduled job could run twice.

6.5.5 Abandoned Shiny Applications

A Shiny applications depends on a persistent connection to a single server. If the server associated with a
particular Shiny application session goes down, the Shiny application will fail. However, simply refreshing

31

the application should result in a new session on an available server, assuming your load balancer detects the
failed node and points you to a working one.

Shiny applications that support client-side reconnects using the session$allowReconnect (TRUE) feature
will automatically reconnect the Shiny application to a working node. See https://shiny.rstudio.com/articles/
reconnecting.html

7 Running with a Proxy

If you are running RStudio Connect behind a proxy server, you need to be sure to configure the proxy server
so that it correctly handles all traffic to and from RStudio Connect. This section describes how to correctly
configure a reverse proxy with Nginx or Apache HTTPD.

When RStudio Connect is behind a proxy, it is important that we send the original request URL in-
formation to Connect so that it can generate FQDN URLs and return them the requester. For this
reason, when proxying to Connect, we recommend adding a header, X-RSC-Request, to the request.
This header value should be the absolute URL of the original request made by the user or browser (i.e.
https://connect.company.com/some/path)

Some proxies (like Amazon Web Services Elastic Load Balancer, for example), do not make it possible to
add custom headers. Because of this, if this header is not supplied, “best efforts” are made utilizing the
standard headers X-Forwarded-Proto, X-Forwarded-Host, and X-Forwarded-Port to parse the original
request URL. If your proxy removes a server prefix from the path, X-Forwarded headers will not work for
your use case, and you should use X-RSC-Request. If both X-RSC-Request and X-Forwarded headers are
supplied, X-RSC-Request takes precedence.

If your proxy secures traffic with SSL, but uses an insecure (HTTP) connection to Connect, Connect
Dashboard users will see a warning about accessing Connect over an insecure connection. You can disable
this warning by using the HTTP.NoWarning = true configuration setting. See A.3.

7.1 Nginx Configuration

On Ubuntu, a version of Nginx that supports reverse-proxying can be installed using the following command:

sudo apt-get install nginx

On Red Hat/CentOS, you can install Nginx using the following command:

sudo yum install nginx

On SUSE, you can install Nginx using the following command:

sudo zypper install nginx

To enable an instance of Nginx running on the same server to act as a front-end proxy to RStudio Connect
you would add commands like the following to your nginx.conf file. This configuration assumes RStudio
Connect is running on the same host as Nginx and listening for HT'TP requests on the :3939 port. If you are
proxying to RStudio Connect on a different machine or port, replace the localhost:3939 references with
the correct address of the server where RStudio Connect is hosted.

http {
map $http_upgrade $connection_upgrade {
default upgrade;
" close;
}

server {

32

https://shiny.rstudio.com/articles/reconnecting.html
https://shiny.rstudio.com/articles/reconnecting.html
http://nginx.org
https://httpd.apache.org

listen 80;
client_max_body_size 0; # Disables checking of client request body size

location / {
proxy_set_header X-RSC-Request $scheme://$host:$server_port$request_uri;
proxy_pass http://localhost:3939;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_http_version 1.1;
proxy_buffering off; # Required for XHR-streaming

I

X
3

If you want to serve RStudio Connect from a custom path (e.g. /rsconnect) you would edit your nginx.conf
file as shown below:

http {
map $http_upgrade $connection_upgrade {
default upgrade;
' close;
}
server {
listen 80;

client_max_body_size O; # Disables checking of client request body size

location /rsconnect/ {
rewrite ~/rsconnect/(.*)$ /$1 break;
proxy_set_header X-RSC-Request $scheme://$host:$server_port$request_uri;
proxy_pass http://localhost:3939;
proxy_redirect / /rsconnect/;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_http_version 1.1;

}

}
}

After adding these entries you’ll then need to restart Nginx so that the proxy settings take effect.
On systemd systems (Red Hat/CentOS 7, SUSE 12, Ubuntu 16.04, and Ubuntu 18.04):

sudo systemctl restart nginx

On upstart systems (Ubuntu 14.04, Red Hat 6):

sudo restart nginx

7.2 Apache Configuration

The Apache HTTPD server can act as a front-end proxy to RStudio Connect by first enabling three modules:

a2enmod rewrite
a2enmod headers
a2enmod proxy_http

33

The following configuration will permit proxying to RStudio Connect. Depending on the layout of your
Apache installation, you may need the Listen and VirtualHost directives in different files.

Listen 80

<VirtualHost *:80>
RewriteEngine on
RequestHeader set X-RSC-Request " {REQUEST_SCHEME}s://%{HTTP_HOST}s%{REQUEST_URI}s"
RewriteCond %{HTTP:Upgrade} =websocket
RewriteRule /(.*) ws://172.17.0.1:3939/$1 [P,L]
RewriteCond %{HTTP:Upgrade} !=websocket
RewriteRule /(.*) http://172.17.0.1:3939/$1 [P,L]
ProxyPass / http://172.17.0.1:3939/
ProxyPassReverse / http://172.17.0.1:3939/
</VirtualHost>

You can serve RStudio Connect from a custom path (e.g. /rsconnect) with a configuration like the following:

Listen 80

<VirtualHost *:80>
RewriteEngine on
RedirectMatch ~/rsconnect$ /rsconnect/
RequestHeader set X-RSC-Request "% {REQUEST_SCHEME}s://%{HTTP_HOST}s%{REQUEST_URI}s"
RewriteCond %{HTTP:Upgrade} =websocket
RewriteRule /rsconnect/(.*) ws://172.17.0.1:3939/$1 [P,L]
RewriteCond %{HTTP:Upgrade} !=websocket
RewriteRule /rsconnect/(.*) http://172.17.0.1:3939/$1 [P,L]
ProxyPass /rsconnect/ http://172.17.0.1:3939/
ProxyPassReverse /rsconnect/ http://172.17.0.1:3939/
Header edit Location ~/ /rsconnect/

</VirtualHost>

8 Security & Auditing

8.1 API Security
8.1.1 Preventing Brute Force & Dictionary Attacks

By default, RStudio Connect allows as many login attempts as it can handle from any source when using the
PAM, LDAP, and Password authentication providers. Users will be able to log in directly by entering their
user name and password.

Setting the Authentication.ChallengeResponseEnabled flag to true enables a CAPTCHA form in the
login screen, and requires that CAPTCHA be solved in order to authenticate. Both visual and audio
CAPTCHA challenges are provided for accessibility needs.

8.2 Browser Security
There are a variety of security settings that can be configured in RStudio Connect. Some of these settings

are enabled by default but can be customized while others are opt-in. Below are some of the security features
worth considering.

34

8.2.1 Web Sudo Mode

When a user performs a sensitive operation in a web browser (such as creating a new API key), they will be
asked to reenter their login credentials. Once the user enters their password properly, their session will enter
a privileged state internally referred to as “web sudo mode” which will allow them to perform these sensitive
operations for a certain window of time without entering their password again. Note that this privileged
mode is a notion purely internal to RStudio Connect and entirely unrelated to the server’s actual sudo or
PAM settings.

This feature is not available on servers configured to use proxied authentication or Google OAuth2, as these
providers don’t have a mechanism for reprompting the user for their password.

For all other authentication providers, the WebSudoMode and WebSudoModeDuration configuration options are
available within the section pertaining to that provider. If WebSudoMode is set to false, then this protection
is disabled; effectively, all authenticated users are always in privileged mode. WebSudoModeDuration controls
the length of time for which a user stays in this privileged mode. From within the section pertaining to your
authentication provider (such as [Password], [PAM], or [LDAP]), you could configure:

; /etc/rstudio-connect/rstudio-connect.gcfg

; Thtis example ©s using password authentication. Use PAM or LDAP as appropriate.
[Password]

WebSudoMode = true

WebSudoModeDuration = 10m

In this case, users would be prompted for their password before performing sensitive actions, then would be
allowed to continue performing sensitive actions for up to 10 minutes without additional prompts. After that
point, any sensitive actions would require entering their password again.

Regardless of the setting, web sudo mode will never affect calls made outside of a browser using a token or an
APT key.

8.2.2 Guaranteeing HTTPS

If you can guarantee that your server should only ever be accessed over a TLS/SSL connection (HTTPS),
then you can consider enabling the HTTPS.Permanent setting. This elevates the security of your server by
requiring that future interactions between your users and this server must be encrypted.

Enabling this setting may keep users from being able to access your RStudio Connect instance if
you later disable HT'TPS or if your certificate expires. Use this setting only if you will permanently
provide a valid TLS/SSL certificate on this server.

Behind the scenes, this makes two changes:

1. Introduces HTTP Strict Transport Security (HSTS) by adding a Strict-Transport-Security HTTP
header with a max-age set to 30 days. HSTS ensures that your users’ browsers will not trust a service
hosted at this location unless it is protected with a trusted TLS/SSL certificate.

2. Enforces the Secure flag on cookies that are set. This prohibits your users’ browsers from sending their
RStudio Connect cookies to a server without an HTTPS-secured connection.

8.2.3 Strong HTTPS

Even with HTTPS, you may wish even more constraints on transport settings. Two settings are available to
constrain HTTPS even further:

35

https://scotthelme.co.uk/hsts-the-missing-link-in-tls/

NOTE: Some Windows builds of the RCurl package are not compatible with TLS 1.1 or TLS
1.2. Windows users should execute options(rsconnect.http = 'curl') to use the local curl
binary, if installed, instead of the outdated RCurl package.

NOTE: Older versions of the RStudio IDE may use webviews that are not compatible with TLS
1.1 or TLS 1.2. In this case, attempting to pair with RStudio Connect without TLS 1.0 would
open a blank screen instead of a login window. Open the blue link from the pairing window in
the browser, or install a newer version of RStudio Connect as a workaround.

1. HTTPS.MinimumTLS: This setting sets the minimum TLS version. By default, the minimum TLS version
supported by RStudio Connect is TLS 1.0. You can choose to set this configuration setting to “1.1” or
“1.2”; before doing so, you should check the SSL Labs User Agent List to ensure your clients will be
compatible with the version you select.

2. HTTPS.ExcludedCiphers: This setting removes a cipher from the list of ciphers available. This may be
useful if your organization has a security policy that disallows certain ciphers to be used.

An example exclusion list could be:

(HTTPS]

Listen = 443

MinimumTLS = 1.2

ExcludedCiphers TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
ExcludedCiphers = TLS_RSA_WITH_3DES_EDE_CBC_SHA
ExcludedCiphers = TLS_RSA_WITH_AES_128_GCM_SHA256
ExcludedCiphers = TLS_RSA_WITH_AES_256_GCM_SHA384
ExcludedCiphers = TLS_RSA_WITH_AES_128_CBC_SHA256
ExcludedCiphers = TLS_RSA_WITH_AES_128_CBC_SHA
ExcludedCiphers = TLS_RSA_WITH_AES_256_CBC_SHA
ExcludedCiphers = TLS_RSA_WITH_3DES_EDE_CBC_SHA

The strings for the ciphers may be found in the IANA TLS Parameters List. For a list of supported ciphers on
your platform that may be excluded, start up RStudio Connect and look for the log line beginning Enabled
HTTPS Ciphers:.

8.2.4 Using a Secure Proxy

If you would prefer that the RStudio Connect process not have access to your TLS/SSL certificates, you may
wish to configure a proxy to handle HTTPS requests. To accomplish this:

e Ensure that your Server.Address is set to the proxy address and uses the https scheme.

e Set HTTP.ForceSecure to true, which will set the Secure flag on all cookies.

e Set HTTP.NoWarning to true to suppress the warning regarding running RStudio Connect over an
unsecured connection, because the connection between the client and the proxy will be secured.

e If necessary, enable the HTTPRedirect.Listen option to redirect proxied plain HTTP connections to
HTTPS.

NOTE: Because the connection between the proxy and RStudio Connect is not secured in this
case, please ensure that the proxy and RStudio Connect are connecting on a trusted network
where an adversary would not be able to capture plain text credentials. For example, many cloud
providers allow isolating servers from the internet while permitting load balancers to access them.
Please see your cloud provider’s documentation for more details.

8.2.5 Content Sniffing

The Server.ContentTypeSniffing setting can be used to configure HTTP responses with the
X-Content-Type-Options header. This header can protect your users from a certain class of mali-

36

https://www.ssllabs.com/ssltest/clients.html
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
https://scotthelme.co.uk/hardening-your-http-response-headers/#x-content-type-options
https://scotthelme.co.uk/hardening-your-http-response-headers/#x-content-type-options

cious uploads.

When Server.ContentTypeSniffing is disabled (the default), the X-Content-Type-Options HTTP header
is given the value of nosniff. This instructs browsers not to inspect the content in an attempt to identify its

type.

When Server.ContentTypeSniffing is enabled, the X-Content-Type-Options HTTP header is not sent;
browsers are free to analyze the content to detect its type.

8.2.6 Content Embedding

The X-Frame-Options HTTP header is used to control what content can be embedded inside other content
in a web browser. The relevant attack is commonly referred to as a “clickjack attack” and involves having
your users interact with a sensitive service without their knowledge.

For the purposes of the X-Frame-0Options header, RStudio Connect distinguishes between “dashboard” and
“user” content. Dashboard content are any of the internal services or assets that are shipped with RStudio
Connect. User content is anything uploaded by a user (reports, Shiny applications, Plumber APIs, etc.)

Server .FrameOptionsContent configures the X-Frame-Options header value for user-uploaded content. By
default it is empty, meaning that the header will not be set. This allows user-provided content to be embedded
in iframes from any location. If you do not intend for others to embed user content on their sites, you can set
this to a value of SAMEORIGIN to ensure that only sites on the same server will be able to embed your users’
content. The RStudio Connect dashboard itself uses iframes to present user content in the dashboard, so it is
not recommended to set this option to DENY.

Server.FrameOptionsDashboard configures the X-Frame-Options header value for internal services and
assets provided with RStudio Connect and defaults to a value of DENY. This means that other sites will not
be able to embed the RStudio Connect dashboard. This setting is more secure in that it protects against
clickjacking attacks against the dashboard, but if you plan to embed the dashboard elsewhere you may need
to tune this setting.

Some advertised values for this header are not supported across all browsers. RStudio Connect
does not restrict the values of these headers.

8.2.7 Custom Headers

If you need to include additional HTTP headers that are not covered by any of the above features, you can
include your own custom headers on all responses from RStudio Connect using the Server.CustomHeader
setting.

This feature can be used to accommodate various other security practices that are not explicitly available as
options elsewhere in Connect. For instance, X-XSS-Protection, Content Security Policy (CSP), HTTP Public
Key Pinning (HPKP), and Cross-origin Resource Sharing (CORS) could all be configured using custom
headers.

Custom headers are added to the HTTP response early during request processing. Values may later
be overwritten or modified by other header settings. This includes both the security preferences
described earlier in this chapter and other headers used internally by RStudio Connect, by
Plumber, or by Shiny. You should not depend on a custom header that conflicts with a header
already in use by RStudio Connect.

The Server.CustomHeader takes a value of the header name and its value separated by a colon. Whitespace
surrounding the header name and its value are trimmed. You can use this setting multiple times as in the
following example:

37

https://scotthelme.co.uk/hardening-your-http-response-headers/#x-content-type-options
https://scotthelme.co.uk/hardening-your-http-response-headers/#x-content-type-options
https://www.troyhunt.com/clickjack-attack-hidden-threat-right-in/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://scotthelme.co.uk/content-security-policy-an-introduction/
https://scotthelme.co.uk/hpkp-http-public-key-pinning/
https://scotthelme.co.uk/hpkp-http-public-key-pinning/
https://wiki.mozilla.org/Security/Guidelines/Web_Security#Cross-origin_Resource_Sharing

; /etc/rstudio-connect/rstudio-connect.gcfg

[Server]
CustomHeader = "HeaderA: some value"
CustomHeader = "HeaderB: another value"

8.3 Audit Logs

RStudio Connect records information about changes to the system. These events can later be retrieved for
auditing purposes.

This table contains the event types logged by the auditing system:

Event

Description

add_user

edit_user
update_lock_user
add_application
upload_bundle
deploy_application

edit_application
remove_application
activate_token

add_group
remove_group
add_group_member
remove_group_member
assign_user_app_role
remove_user_app_role
assign_group_app_role
remove_group_app_role
clear_app_viewer_acl
add_api_key
remove_api_key
add_vanity
update_vanity
remove_vantiy
remove_bundle
download_bundle
add_tag

remove_tag
update_tag
assign_tag_to_parent
add_app_tag
remove_app_tag

Create a user

Change an existing user

Set or remove a lock for an existing user

Add new content

Upload a bundle for a content

Deploy content to the server. Content may need to be published
after deployment.

Change content settings

Delete content

Activate a token. Tokens are used by the rsconnect package to
authenticate a user.

Create a group

Delete a group

Add a user to a group

Remove a user from a group

Give a user view or edit access to content
Remove a user from view or edit access list
Give a group view or edit access to content
Remove a group from view or edit access list
Change from a specific list of viewers to “just me”
Add API key

Remove API key

Add vanity URL

Update vanity URL

Remove vanity URL

Remove a bundle

Download a bundle

Create a tag/category

Delete a tag/category

Update a tag/category

Associate a tag with some parent tag/category
Associate a tag with content

Disassociate a tag with content

updated_environment_variables Change to application environment variables

8.3.1 Audit Logs Command-Line Interface

See Appendix B for more information on using the usermanager CLI to dump audit logs.

38

8.4 Application Environment Variables

User-specified environment variables for applications are encrypted on-disk and in-memory. They are
decrypted only when a process is about to be started.

9 Database

RStudio Connect supports multiple database options. Currently, the supported databases are SQLite and
PostgreSQL.

Customize the Database.Provider property with a database scheme appropriate for your organization. See
Section A.7 for details

Here is a partial configuration which chooses to use SQLite

; /etc/rstudio-connect/rstudio-connect.gcfg
[Database]
Provider = sqlite

9.1 SQLite

SQLite is the default database provider.

RStudio Connect will use SQLite database if the Database.Provider setting has a value of sqlite or if
Provider is not present in the configuration file.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Database]
Provider = sqlite

You can also specify the directory to store the SQLite file on your file system. This can be done by specifying
SQLite.Dir in the configuration file.

; /etc/rstudio-connect/rstudio-connect.gcfg
[SQLite]
Dir = /mnt/connect/sqlite

If this field is not specified, it will default to {Server.DataDir}/db. This location must exist on local
storage.

If the location for Server.DataDir is not local storage but a networked location over NFS, configure the
SQLite.Dir setting so it still resides on some local volume.

9.1.1 SQLite Backups

RStudio Connect can be configured to periodically back up its database while running.

; /etc/rstudio-connect/rstudio-connect.gcfg
[SsQLite]

Backup = true

BackupFrequency = 24h

BackupRetentionLimit = 7

The above config will execute an online backup every 24 hours. RStudio Connect will retain up to 7 of those
backups. If an eigth backup is created, the oldest of the previous backups will be deleted. This provides a

39

grace period for an administrator implementing a data retention policy, such as a practice of copying backups
to tape periodically.

Backups are stored in the same directory as the main database file: /var/lib/rstudio-connect/db by
default. Backups are lexically sortable, because they are timestamped with the UNIX epoch time padded
to 11 digits. For example, if the server’s database file is /var/1lib/rstudio-connect/db/connect.db, a
backup of that database could be /var/lib/rstudio-connect/db/connect.db.01508526538.

The same process is applied to the instrumentation database file. It will be backed up based on the same
settings as for the main database file.

Automatic SQLite backups are not a complete backup solution for RStudio Connect. You should also make
regular backups of the Server.DataDir directory. This is especially important because the Server.DataDir
directory is expected to be kept in sync with the database.

Restoring a SQLite backup is straightforward:

e Ensure that the backup is valid with the command sqlite3 <backup file name> "PRAGMA
integrity_check;"

e Stop the RStudio Connect service

o Copy the current database file as well as its .wal file, if any. (If you wish to analyze them or send a
copy to RStudio Support)

e Replace the current database file with the backup

o If they exist, delete any .wal and .shm files associated with the previous database. Failure to do this
could lead to further downtime and possible data corruption.

e Start the RStudio Connect service

Note also that RStudio Connect has no way of restoring applications deployed or changes made since the last
backup. Restoring the backup file will cause these changes to be lost permanently.

9.2 PostgreSQL

PostgreSQL is an available database provider which is more powerful and performant than SQLite.

You must provide your own Postgres server which will likely be a separate box from your RStudio Connect
server (but not required). We currently support any 9.x or 10.x version greater than or equal to 9.2. Your
Postgres server does not have to be dedicated to RStudio Connect, but it must have its own dedicated
database.

To use Postgres, select it as your provider with Database.Provider = postgres. You will also need to
provide a fully qualified Postgres URL in Postgres.URL. The user credentials supplied in this URL must be
able to create and alter database tables, in addition to read/write permissions in the database referenced as
the path of the URL. Please ensure that you have already created a blank database with the name given.

9.2.1 SSL

RStudio Connect assumes by default that SSL is enabled on the Postgres server. If you do not have SSL
enabled on your Postgres database, you should add ?sslmode=disable to the Postgres.URL.

Here is an example configuration that has Connect using a Postgres database with SSL connections:

; /etc/rstudio-connect/rstudio-connect.gcfg
[Database]
Provider = postgres

[Postgres]
URL = "postgres://username:password@db.seed.co/connect"

40

Here is an example configuration that has Connect using a Postgres database without SSL connections:

; /etc/rstudio-connect/rstudio-connect.gcfg
[Database]
Provider = postgres

[Postgres]
URL = "postgres://username:password@db.seed.co/connect?sslmode=disable"

9.2.2 Schemas

If you need to, you can tell Connect to restrict itself to keeping its tables within a specific
schema. You control this by giving PostgreSQL a search path as part of the URL by adding
options=-csearch_path=<schema-name> to the URL. If it’s the only item you’re adding, separate it from
the rest of the URL with ? (just like the sslmode item above). Otherwise, separate it from other items with
&

Here is an example configuration that specifies a schema to use, with SSL:

; /etc/rstudio-connect/rstudio-connect.gcfg
[Database]
Provider = postgres

[Postgres]
URL = "postgres://username:password@db.seed.co/connect?options=-csearch_path=connect_schema"

Here is an example configuration that specifies a schema to use, with SSL disabled:

; /etc/rstudio-connect/rstudio-connect.gcfg
[Database]
Provider = postgres

[Postgres]
URL = "postgres://username:password@db.seed.co/connect?sslmode=disable&options=-csearch_path=connect_scl

RStudio Connect will refuse to start when given a schema that does not already exist. The schema must be
owned by the connecting user or by a group that contains the connecting user.

9.3 Changing Database Provider

Connect includes a migrate command for migrating data from one database to another.

The migration utility is installed at /opt/rstudio-connect/bin/migrate. It uses the configuration defined
in /etc/rstudio-connect/rstudio-connect.gcfg unless you specify an alternate configuration file with
the --config flag.

The migrate utility must be run as root.

The migrate utility can only be run when Connect is stopped. See Section 5.1 for information on stopping
and restarting Connect.

Note: Migration from PostgreSQL to SQLite is not supported at this time.
Note: Migration of instrumentation event data is not supported at this time.

If you are also migrating your RStudio Connect installation to a new server, see 4.8.

41

9.3.1 Database Migration Checklist

Use this checklist to guide your migration process:

1. Shut down Connect - 5.1

Back up your data - 4.7

Ensure that you have a Postgres configuration section - 9.2

Run the migration - B.2

Update the Database.Provider configuration setting to point to the new database - A.7
Restart Connect - 5.1

A

9.3.2 Configuration Requirements

When migrating data, the configuration file must contain valid configuration sections for both SQLite and
Postgres. The migration utility will connect to the SQLite and PostgreSQL databases specified in the
configuration.

10 Authentication

RStudio Connect supports a variety of user authentication options. Without customization, a locally-backed
password scheme is used. You can learn more about password authentication in Section 10.5.

When signing into RStudio Connect, a session cookie is used to keep a user logged in for 30 days. The lifetime
of these sessions can be altered using the Authentication.Lifetime setting.

External authentication is available through the following integrations:

o LDAP and Active Directory (Section 10.6)

o OAuth 2.0 using Google Apps accounts (Section 10.7)
o PAM (Section 10.8)

o Proxied Authentication (Section 10.9)

Customize the Authentication.Provider property with an authentication scheme appropriate for your
organization. See Section A.10 for details

Here is a partial configuration which chooses to use LDAP.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Authentication]
Provider = ldap

10.1 Changing Authentication Provider

If changing the style of authentication is absolutely necessary, you will need to completely purge and reinstall
RStudio Connect. See Section 5.5 for instructions.

10.1.1 Unsupported Authentication Changes

o Changing from one authentication provider to another (for example, changing provider from password
to LDAP) is NOT SUPPORTED.

Why? Users cannot log into accounts created with other authentication providers. The accounts under the
previous authentication provider will be orphaned, including any administrator accounts.

42

e Changing user UNIX accounts under PAM is NOT SUPPORTED.

Why? The user’s Unix account name is considered the source of truth for user identity. This means that a
clustered configuration does not need to ensure usernames have the same UIDs on every node.

e Changing X-Auth-Username responses for a user under Proxy auth is NOT SUPPORTED

Why? The X-Auth-Username response is considered the source of truth for user identity.

10.2 Session Management

Sessions are stored on the server in RStudio Connect. Encrypted session cookies stored only on the client are
deprecated, as they provide inferior security.

The server will periodically check the data store for expired cookies and remove them. This happens once per
hour by default, but is configurable using the Authentication.CookieSweepDuration configuration setting.
This does not affect the lifetime of web sessions, which is controlled by the Authentication.Lifetime
configuration setting.

10.3 Username requirements

When using OAuth or Password authentication, users are required to choose a valid username when first
logging in. Usernames must:

e be 3-64 characters in length,
o start with a letter, and
e contain only alphanumeric characters, underscores, and periods.

By default, the LDAP, PAM, and Proxy authentication providers require that a valid username is received
from the provider. LDAP additionally requires a valid user email. If the provider cannot resolve any of these,
an error will be thrown.

Note that there is a known issue: if LDAP.UsernameAttribute is blank for the given LDAP credentials, the
user will not be able to authenticate.

The LDAP, PAM, and Proxy authentication providers use relaxed username requirements. These providers
permit any username, except the following prohibited usernames:

e connect

e apps

e users

e groups

e setpassword
e user-completion
e confirm

e recent

e reports

e plots

e unpublished
o settings

e metrics

o tokens

e help

« login

e welcome

e register

e resetpassword

43

e content

10.4 User Attribute Editability

Depending on your authentication provider, certain attributes of a user are editable and certain ones are not.
Furthermore, who is able to make edits to which user can change depending on configuration.

10.4.1 Password

All user attributes are editable by either an administrator or by the user themselves. You can configure
password authentication (via Password.UserInfoEditableBy) to allow only administrators to edit user
attributes or allow both administrators to edit anyone’s attributes and users to edit their own attributes. It
is recommended that if you set SelfRegistration = false, that you also configure UserInfoEditableBy
to Admin. This is so users created by the administrator cannot be changed by non-administrators.

10.4.2 OAuth

For OAuth, first name, last name, and email address are provided by the provider. Therefore, it is not
editable by any user. If you need to change/update this information, update your oauth provider and the
changes will be synced into RStudio Connect on next user login.

Usernames are chosen by the logging in user at first login. Usernames may be subsequently edited by the
user or an administrator.

10.4.3 LDAP
All user attributes are provided by the LDAP server(s). If you need to change user attributes in RStudio
Connect, you can do this within the LDAP record and RStudio Connect will be updated on next user login.

Please be aware, that any changes to the value that uniquely identifies the user on LDAP will cause RStudio
Connect to see it as a brand new user creating a new account and the individual will not be able to log into
their old account.

The section 10.6 has more information on how to avoid such issues by using vendor-specific values to identify
users.
Additionally, please refer to the appendix B for more information on using the usermanager CLI to repair

users in the situation above.

10.4.4 Proxy

For proxy, first name, last name, and email address are user editable (since this information is not known by
the provider). A user can edit their own attributes here, as well as an administrator.

Usernames are taken from the provider, therefore, is not editable. Changing the username given by the proxy
will result in a new user being created in RStudio Connect.

10.4.5 PAM

First name, last name, and email addresses may be edited by the user or an administrator in PAM
authentication mode. Usernames are not editable because they correspond to the UNIX account username.

44

If a user’s corresponding UNIX account username is changed, RStudio Connect will create a new account for
that username the next time they log in.

10.5 Password

Password authentication is the default authentication provider used by RStudio Connect. This is a local user
account backed by the RStudio Connect database and is not integrated with a third-party service.

Users will be able to create accounts when they first visit the system and will provide profile details at that
time. An administrator will also be able to create new accounts.

Password authentication may be appropriate in small organizations without centralized I'T systems.

RStudio Connect will use password authentication if the Authentication.Provider setting has a value of
password or if Provider is not present in the configuration file.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Authentication]
Provider = password

10.6 LDAP and Active Directory

RStudio Connect can integrate with your company’s LDAP or Active Directory (AD) infrastructure. User
authentication and user search requests will be directed to the LDAP/AD server.

LDAP and Active Directory support in RStudio Connect has the following constraints:

e A user is uniquely identified by the attribute defined in LDAP.UniqueIdAttribute. This defaults to
"DN" (Distinguished Name) which offers a broad compatibility with different LDAP products but has
some known limitations. For information on how to configure this setting for your specific LDAP server,
see 10.6.3.8

e The same limitation applies to LDAP groups which use LDAP.GroupUniqueIdAttribute to define the
attribute which uniquely identifies them, also with the default of "DN".

e The following user information is required: first name, last name, email address, and username. Different
LDAP/AD attributes may be used for each of these fields.

o Changes to a user (e.g. their name, email address, or username) will not propagate to RStudio Connect
until the next time the user logs in.

e When using single bind, the DN of a user must contain their username (i.e. must utilize
the LDAP.UsernameAttribute). For example, it is not supported if the DN for a user is
cn=SueJacobs,ou=People,dc=company,dc=com but their actual username is stored in the uid or
SAMAccountName LDAP attribute. You must use double bind when the DN does not contain the
username.

e When using a single bind configuration, searches will only include users who have previously logged
into RStudio Connect.

e When using a single bind configuration, groups will be unavailable.

o A username or DN containing a forward slash (/) is not supported.

When attempting to troubleshoot a problem relating to LDAP, you can enable more verbose logging by
adding LDAP.Logging = true to any LDAP section in the configuration.

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "any"]
Logging = true

45

10.6.1 Defining an LDAP or AD section

Start an LDAP or Active Directory configuration with a LDAP section header like the following;:

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "European AD Server"]

An LDAP or Active Directory configuration section header is always of the form [LDAP "EFFECTIVE NAME"].
The “effective name” is a name that is meaningful to your organization ("European AD Server" in the
example).

RStudio Connect supports more than one LDAP/AD server through multiple, uniquely named LDAP con-
figuration sections. Other complex LDAP/AD configurations can also be achieved by using multiple LDAP
sections.

Make sure that each LDAP configuration section has a unique effective name. If multiple LDAP
sections have the same name, they will be combined as described in Appendix A.

The LDAP section name is treated case sensitively.

Here is an sample configuration using two LDAP sections.

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "European LDAP Server"]

[LDAP "Statistics Department LDAP Server"]

Each of these sections will have a variety of configuration settings, which are explained below.

10.6.2 Complete Configuration Example

Here is a complete LDAP configuration as an example. Here, we are communicating with an OpenLDAP
server on the local host; see the documentation for ServerAddress to learn how to direct requests elsewhere.
The other settings will probably need adjustment for your environment. Talk to your LDAP administrator if
you need help with your organization’s LDAP hierarchy.

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample OpenLDAP Configuration"]
ServerAddress = 127.0.0.1:389

BindDN = "cn=admin,dc=example-openldap"
BindPassword = "XXXXXXXX"

UserSearchBaseDN = "ou=People,dc=example-openldap"
UniqueIdAttribute = "entryUUID"

UsernameAttribute = "uid"

UserObjectClass = "posixAccount"

UserEmailAttribute = mail
UserFirstNameAttribute = givenName
UserLastNameAttribute = sn

This sample configuration assumed a very simple OpenLDAP structure; here is a sample user record to show
the mapping between LDAP records and RStudio Connect LDAP configuration.

dn: uid=john,ou=People,dc=example-openldap
objectClass: inetOrgPerson
objectClass: posixAccount

46

objectClass: shadowAccount
uid: john

sn: Doe

givenName: John

cn: John Doe

displayName: John Doe
uidNumber: 10000
gidNumber: 5000
userPassword: johnldap
gecos: John Doe
loginShell: /bin/bash
homeDirectory: /home/john
mail: john@example.com
entryUUID: clafa3d6-d688-1037-99f0-d7682e3458da

More LDAP configuration scenarios can be found in Appendix D.

10.6.3 LDAP or AD Configuration Settings

10.6.3.1 ServerAddress

ServerAddress (required) is used to define the location of the LDAP/AD server. This should contain an IP
address or DNS address, and a port (colon separated). Most LDAP/AD servers operate on port 389 or 636
(for SSL). But you can specify any port that fits your environment.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
ServerAddress = 127.0.0.1:389

ServerAddress = ldap.company.com:389

ServerAddress = ldaps.company.com:636
ServerAddress = private.internal.local:7554
10.6.3.2 TLS

TLS is a Boolean (true/false) attribute that causes all connections to your LDAP/AD server to use TLS
(SSL). The default value for this is false. This cannot be enabled if StartTLS is true.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]

TLS = true

TLS = false

10.6.3.3 StartTLS

StartTLS is a Boolean (true/false) attribute that causes connections to your LDAP/AD server to initially
use an unencrypted channel but then upgrade to a TLS connection using “LDAPS” or “Opportunistic TLS”.
The default value for this is false. This cannot be enabled if TLS is true.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]

47

https://en.wikipedia.org/wiki/Opportunistic_TLS

StartTLS = true
StartTLS = false

At present, the error messages associated with Start TLS problems can be cryptic. If you’re encountering
issues while configuring StartTLS, consider adding debug logging for LDAP by including the following line in
your configuration file.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Debug]
Log = ldap

10.6.3.4 TLSCACertificate

TLSCACertificate is a file location that is a certificate authority that is used to connect to an LDAP server
securely. This file should be in PEM format.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
TLSCACertificate= /etc/ssl/cert/ca.pem

10.6.3.5 ServerTLSInsecure

ServerTLSInsecure is a Boolean (true/false) attribute that allows insecure TLS connections. This controls
whether a client will verify the server’s certficate chain and host name. If this is true, RStudio Connect
will accept any certificate presented by the server and any host name in that certificate. Setting to true
is susceptible to man-in-the-middle attacks, but is required if, for example, your server uses a self-signed
certificate. The default value is false.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
ServerTLSInsecure = true

ServerTLSInsecure = false

10.6.3.6 BindDN and BindPassword

BindDN and BindPassword are credentials used to connect to an LDAP/AD server to authenticate, search for
users, and other functionality. While it is encouraged to specify these two attributes (a.k.a. “double bind”),
it is not required (a.k.a. “single bind”). These credentials should have read-only administrator’s rights, if
configured.

If you do not specify these attributes, some functionality of RStudio Connect will not work. For example,
searching for users to add as collaborators, or sending email documents will only work partially.

The BindDN can be a DN, UPN, or NT-style login.

Quote passwords and DNs that contain a literal double-quote (") or one of the ; or # comment
characters.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
; Exzample DN

48

https://www.ldap.com/ldap-dns-and-rdns
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680857.aspx

BindDN = uid=john,ou=People,dc=company,dc=com
BindPassword = "johnpassword"

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]

; Exzample UPN

BindDN = admin@company.com

BindPassword = "adminpassword"

; /etc/rstudio-connect/rstudio-connect.gcfg

[LDAP "Sample LDAP Configuration"]

; Ezample NT-style login

BindDN = COMPANY\\admin # we use double slashes (\\) to character escape the last slash
BindPassword = "adminpassword"

10.6.3.7 AnonymousBind

AnonymousBind instructs RStudio Connect to establish an anonymous bind to your LDAP/AD server. For
organizations that support anonymous binds, you may use this option instead of BindDN and BindPassword.

For this to work properly, your LDAP server must allow anonymous binds to search and view all pertinent
groups, group memberships, and users.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
AnonymousBind = true

10.6.3.8 TUniquelIdAttribute

UniqueIdAttribute (optional, default "DN") is the vendor-specific object attribute present for all users which
has a unique value that identities the object persistently. Commonly used attributes include:

e objectGUID (Microsoft AD)
o entryUUID (OpenLDAP)

o orclGuid (Oracle OID)

o ibm-entryUUID (IBM RACF)
e GUID (Novell eDirectory)

Please refer to your LDAP vendor documentation for the correct value.

WARNING: any change to this setting automatically invalidate all existing users. RStudio Connect will try
to detect this and it will not start if problems are found. Before starting up RStudio Connect with the new
configuration, all users must be adjusted to use the updated attribute value via the usermanager CLI: B.1

Note: The use of the default value of "DN" is not recommended and existing installations should
use a different value if possible. RStudio Connect will issue a warning on startup if this condition
is detected. The Distinguished Name (DN) is not a persistent value in LDAP/AD and it may
change in certain situations. RStudio Connect will no longer be able to refer to a user once their
DN changes. You can repair an affected user by updating the DN via the usermanager CLI: B.1

10.6.3.9 UserSearchBaseDN

UserSearchBaseDN (required) is the starting point from which RStudio Connect will search for user entries
in your LDAP/AD server.

49

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UserSearchBaseDN = dc=company,dc=com
UserSearchBaseDN = ou=People,dc=company,dc=com

10.6.3.10 UserObjectClass

UserObjectClass is the objectClass that a user in your LDAP/AD structure will have. Common examples
of this are user, posixAccount, organizationalPerson, person, and inetOrgPerson.

UserObjectClass is used to define UserFilterBase if that property is not explicitly configured. Either
UserObjectClass or UserFilterBase must be defined. If both have values, only UserFilterBase will be
used.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UserObjectClass = user

UserObjectClass = posixAccount

10.6.3.11 UserFilterBase

The UserFilterBase attribute allows more flexible when searching for user objects in complicated LDAP
hierarchies.

FEither UserObjectClass or UserFilterBase must be defined. If UserFilterBase is unset, it is given a
default value of objectClass={UserObjectClass}.

If users are identified by two separate objectClass values, you might use the configuration:

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UserFilterBase = &(objectClass=user) (objectClass=statistician)

You can disqualify an objectClass value with the configuration:

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UserFilterBase = &(objectClass=user) (! (objectClass=computer))

10.6.3.12 UsernameAttribute

UsernameAttribute (required, case-sensitive) is the LDAP entry attribute that contains the username of a
user.
Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UsernameAttribute = uid

UsernameAttribute = sAMAccountName

50

10.6.3.13 UserFirstNameAttribute

UserFirstNameAttribute (required, case-sensitive) is the LDAP entry attribute that contains the first name
of a user.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UserFirstNameAttribute = givenName

10.6.3.14 UserLastNameAttribute

UserLastNameAttribute (required, case-sensitive) is the LDAP entry attribute that contains the last name
of a user.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UserLastNameAttribute = sn

10.6.3.15 UserEmailAttribute

UserEmailAttribute (required, case-sensitive) is the LDAP entry attribute that contains the email address
of a user.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
UserEmailAttribute = mail

10.6.3.16 PermittedLoginGroup

PermittedLoginGroup defines a group DN that a user must be a member of in order to login into Connect.
You can specify this attribute multiple times. Be aware that this feature restricts only the ability for users to
login. Users not in this group could still be referenced when setting access controls for content or as email
recipients. Because the users could not login, they would not be able to access content even if they were
added as a viewer or collaborator, but they might still be able to receive emailed versions of reports.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg

[LDAP "Sample LDAP Configuration"]

PermittedLoginGroup = cn=admins,ou=group,dc=company,dc=com
PermittedLoginGroup = cn=scientists,ou=group,dc=company,dc=com

10.6.3.17 GroupUniqueIdAttribute

GroupUniqueIdAttribute (optional, default "DN") is the vendor-specific object attribute present for all
groups which has a unique value that identities the object persistently. Please refer to your LDAP vendor
documentation for the correct value. In general, users and groups use the same value. See 10.6.3.8

WARNING: any change to this setting automatically invalidate all existing groups. RStudio Connect will try
to detect this and it will not start if problems are found. Before starting up RStudio Connect with the new
configuration, all groups must be adjusted to use the updated attribute value via the usermanager CLI: B.1

o1

Note: The use of the default value of "DN" is not recommended and existing installations should
use a different value if possible. RStudio Connect will issue a warning on startup if this condition
is detected. The Distinguished Name (DN) is not a persistent value in LDAP/AD and it may
change in certain situations. RStudio Connect will no longer be able to refer to a group once their
DN changes. You can repair an affected groups by updating the DN via the usermanager CLI:
B.1

10.6.3.18 GroupObjectClass

GroupUserObjectClass is the objectClass that a group in your LDAP/AD structure will have. Common
examples of this are group, and posixGroup.

GroupObjectClass is used to define GroupFilterBase if that property is not explicitly configured. Either
GroupObjectClass or GroupFilterBase may be defined. If both have values, only GroupFilterBase will
be used.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
GroupObjectClass = group

GroupObjectClass = posixGroup

10.6.3.19 GroupFilterBase

The GroupFilterBase attribute allows more flexible when searching for group objects in complicated LDAP
hierarchies.

Either GroupObjectClass or GroupFilterBase may be defined. If GroupFilterBase is unset, it is given a
default value of objectClass={GroupObjectClass}.

If groups are identified by two separate objectClass values, you might use the configuration:

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
GroupFilterBase = &(objectClass=group) (objectClass=club)

You can disqualify an objectClass value with the configuration:

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
GroupFilterBase = &(objectClass=group) (! (objectClass=flock))

10.6.3.20 GroupNameAttribute
GroupNameAttribute (case-sensitive) is the LDAP entry attribute that contains the name of a group.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
GroupNameAttribute = cn

GroupNameAttribute = sAMAccountName

10.6.3.21 GroupSearchBaseDN

52

GroupSearchBaseDN is the starting point from which RStudio Connect will search for group entries in your
LDAP/AD server.

Examples

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "Sample LDAP Configuration"]
GroupSearchBaseDN = dc=company,dc=com
GroupSearchBaseDN = ou=Groups,dc=company,dc=com

10.7 OAuth2 (Google)

OAuth2 authentication is available to authenticate against the Google OAuth2 service.

RStudio Connect will use OAuth2 authentication if the Authentication.Provider setting has a value of
oauth2.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Authentication]
Provider = oauth2

Appendix A.12 contains information about each OAuth2 configuration option.

In order for RStudio Connect to use Google as an OAuth2 service, you will need a client ID and client secret.

10.7.1 Obtaining a Client ID and Client Secret

These instructions tell you how to obtain an OAuth2 client ID and client secret. We recommend a distinct
set of credentials for each application you configure to use the Google OAuth2 service.

1. Visit the Google Developers Console and create a new project. Give it a name of your choosing, such
as “rstudio-connect”.

2. Once the project is created, locate and enable the “Google+ API”.

3. In the left navigation window, click on “Credentials”, then goto the “OAuth consent screen” tab, fill in
the information requested and click “Save”.

4. Once again, click “Credentials” in the left navigation window. Then click the dropdown button “New
credentials”, then “OAuth client ID”.

5. For “Application Type”, select “Web Application”. Then give your client ID a descriptive name.
For “Authorized JavaScript origins”, enter your RStudio Server URL (i.e. https://HOST:PORT). For
“Authorized redirect URIs”, use your RStudio Connect server address with /__login__/callback (i.e.
https://HOST:PORT/__login__/callback).

6. Click “Create”. Your client ID and client secret will be shown to you.

Add the client ID and secret to your configuration file as shown in the example below.

; /etc/rstudio-connect/rstudio-connect.gcfg
[0Auth2]

ClientId = <CLIENT ID>

ClientSecret = <CLIENT SECRET>

With ClientId and either ClientSecret or ClientSecretFile configured, you can use your Google Apps
account to sign into RStudio Connect!

53

http://oauth.net/2/
https://console.developers.google.com

10.7.2 Restricting Access

The default configuration allows all Google account holders to access RStudio Connect. We recommend that
you limit access to specific domains that are used by your organization.

Verify that you can use your Google Apps account to sign into RStudio Connect before attempting
to configure access restrictions.

The 0Auth2.AllowedDomains setting specifies the set of domains that are allowed to access your RStudio
Connect server. Multiple domains should be space-separated.

; /etc/rstudio-connect/rstudio-connect.gcfg
[0Auth2]
AllowedDomains = company.com subsidiary.com

You may also restrict access by email address if using domain alone is insufficient. The 0Auth2.AllowedEmails
setting specifies the set of email addresses that are allowed to access your RStudio Connect server. Multiple
addresses should be space-separated.

; /etc/rstudio-connect/rstudio-connect.gcfg

[0Auth2]

AllowedEmails = jdoe@company.com asmith@subsidiary.com

It is important to understand how the AllowedDomains and AllowedEmails properties interact.

If only AllowedDomains is configured, only email addresses with a listed domain will be permitted access.

If only AllowedEmails is configured, only listed email addresses will be permitted access.

When both AllowedDomains and AllowedEmails are specified, email addresses given in AllowedEmails are
permitted access in addition to email addresses with a domain listed in AllowedDomains.

10.7.3 Searches

RStudio Connect allows users to search for collaborators against the user directory associated with your
Google Apps account. That search is performed on behalf of the current user. Different accounts may have
different visibility within the user directory and therefore will see different results. This is most obvious when
you have configured RStudio Connect to allow access to two different domains. Users in company.com, for
example, will likely not be able to search for colleagues in subsidiary.com.

RStudio Connect augments the Google Apps user directory search with a local search across its set of known
accounts. Once your colleague has created their own RStudio Connect account, they will become discoverable.

10.8 PAM

RStudio Connect can use PAM for user authentication. PAM authentication is used if the
Authentication.Provider setting has a value of pam.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Authentication]
Provider = pam

See Section 12.7 for information about using PAM sessions when launching R processes.

You can change the PAM service name used for authentication by customizing the PAM.Service setting. The
default PAM service name used for authentication is rstudio-connect.

54

http://www.linux-pam.org/

; /etc/rstudio-connect/rstudio-connect.gcfg
[PAM]
Service = rstudio-connect

Note that there are three types of PAM service that can be configured in the PAM configuration section (See
Section 12.7 for more information):

e PAM.Service - The PAM service used for authenticating users when logging in.

e PAM.SessionService - When PAM.UseSession is enabled, the PAM service used for running basic R
processes either as the default user or as an arbitrary user. Should not require a password.

e PAM.AuthenticatedSessionService - The PAM service used for running processes as the currently
logged-in user with the user’s password. Requires PAM.UseSession, PAM.ForwardPassword, and
Applications.RunAsCurrentUser to be enabled. Useful for Kerberos configurations.

We assume that RStudio Connect is configured to use the rstudio-connect PAM service name for authenti-
cation in the examples that follow.

10.8.1 Ubuntu

RStudio Connect does not create a PAM service on Ubuntu systems. When RStudio Connect attempts to
use the rstudio-connect service name for authentication, PAM will recognize that there is no service with
that name and fall back to the default other service located at /etc/pam.d/other.

The default Ubuntu other service is configured to inherit from a set of common PAM services:

Ubuntu default "other" PAM service.
@include common-auth

@include common-account

@include common-password

@include common-session

If the other service is appropriate for your organization, no further configuration is needed.

You need a custom rstudio-connect PAM service for RStudio Connect only if the other service is not fitting
for your users. Create and configure /etc/pam.d/rstudio-connect to prevent PAM from falling back to the
other service. PAM will use this service for subsequent authentication attempts using the rstudio-connect
service name.

10.8.2 Red Hat/CentOS/SUSE

Red Hat/CentOS/SUSE systems may deny access to unknown PAM service names by default. This is because
the other configuration in /etc/pam.d/other contains only “deny” rules.

#/PAM-1.0

The Red Hat/Cent0S default "other" PAM service.
auth required pam_deny.so

account required pam_deny.so

password required pam_deny.so

session required pam_deny.so

The RStudio Connect RPM installs an rstudio-connect PAM service at /etc/pam.d/rstudio-connect.
This service is configured to require a user-id greater than 500 and authenticates against local system accounts.

#JPAM-1.0
The RStudio Connect default PAM service.
auth requisite pam_succeed_if.so uid >= 500 quiet

55

auth required pam_unix.so nodelay
account required pam_unix.so

This default PAM service may not reflect the authentication behavior that you want for RStudio Connect.
Feel free to customize this service for your organization.

10.8.3 Configuring a PAM service

This section may be helpful if your organization has different requirements from the default behavior of the
rstudio-connect PAM service name. Please consult with your PAM/systems administrator to be sure that
the RStudio Connect PAM service configuration fits your needs.

If your system already has a PAM service (e.g. /etc/pam.d/login) with the desired behavior, it may be
enough to simply include that service from within the RStudio Connect service. For example:

RStudio Connect PAM service that defers to the existing login service.
@include login

You could also copy that existing service into the RStudio Connect service, meaning the copy can be changed
and evolve independently from the source service.

$ sudo cp /etc/pam.d/login /etc/pam.d/rstudio-connect

Lastly, you could configure the PAM. Service setting to reference that PAM service. This would be appropriate
if you have a common rstudio service that you use across all the RStudio products, for example.

; /etc/rstudio-connect/rstudio-connect.gcfg
[PAM]
Service = rstudio

If you change the PAM.Service setting from its default rstudio-connect value, the PAM service defined in
/etc/pam.d/rstudio-connect will not be used.

10.8.4 Groups

Groups are not supported when using PAM authentication.

10.9 Proxied Authentication

RStudio Connect supports proxied authentication. This allows an external system to intercept requests and
handle the authentication of users visiting the Connect dashboard or applications Connect is hosting.

10.9.1 How this Works

A service (like Apache, for example) runs as your customized authentication server. It is responsible for
intercepting all requests to RStudio Connect and performing the required authentication and authorization.
Requests from authenticated users will have a custom HTTP header added before the request is proxied
through to RStudio Connect. That HTTP header contains the username of that visitor. RStudio Connect
will take the value from the HTTP header and treat the current user as the username specified in the header.

We have no means of validating that this HT'TP header was added by your authentication server and not
by the user directly. It is very important from a security perspective that the RStudio Connect server is
properly firewalled off in your network and that all access to the Connect server is proxied through your
authentication server.

56

Important Note

The username HTTP header should never be set by the requester. In all cases, your authentication
server should delete that header if it exists before authenticating the user and adding the header
itself. RStudio Connect will return a generic authentication failure if duplicate authentication
headers are provided.

RStudio Connect does not currently support directing users to a login page when using proxied authentication.
Therefore, we recommend that your proxy prevent anonymous access to RStudio Connect; only allow
authenticated users.

10.9.2 Deployment from the RStudio IDE

Deploying from the RStudio IDE is a unique situation. The IDE uses an R package rsconnect to obtain
deployment credentials from RStudio Connect. Those credentials are used to sign deployment requests. The
minimum required version of rsconnect for proxy authentication is 0.8.7.

Deployment requests are signed with credentials obtained during an earlier, authenticated session, and should
pass through your proxy without alteration.

The following three headers when used together identify deployment requests and should pass through your
proxy without attempting to authenticate the user:

e X-Auth-Token
e X-Auth-Signature
¢ X-Content-Checksum

10.9.3 Example Proxy Configuration

The following examples demonstrate how to intercept and re-route unauthenticated requests to RStudio
Connect, which is served via reverse-proxy at /rsconnect. The examples assume an authentication server is
running at /auth which, upon successful authentication, will set a HTTP-only cookie named verified-user
containing the username of the authenticated user and redirect the user back to RStudio Connect via the
URL specified in the url query parameter.

Nginx configuration:

map $http_upgrade $connection_upgrade {
default upgrade;
" close;

}

map $http_cookie $auth_username {
default "";
"~xverified-user=(7<username>[";]+)" "$username";

}

map "$auth_username:$http_x_auth_token" $requires_auth {
default O;
n . n 1;

}

server {
listen 80 default_server;

location /rsconnect/ {

57

if ($requires_auth = 1) {
return 307 $scheme://$host:$server_port/auth/login?url=$request_uri;

¥
rewrite ~/rsconnect/(.*)$ /$1 break;
proxy_pass http://rstudio-connect-host:3939;
proxy_redirect / /rsconnect/;
proxy_pass_request_headers on;
proxy_connect_timeout 5;
proxy_http_version 1.1;
proxy_buffering off; # Required for XHR-streaming
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_set_header X-RSC-Request $scheme://$host:$server_port$request_uri;
proxy_set_header X-Auth-Username $auth_username;

3

}
Apache configuration:

RewriteEngine on
ProxyPreserveHost on

<VirtualHost *:80>
SetEnvIf Cookie "verified-user=([";]+)" AuthUsername=$1
<If "%{REQUEST_URI} !~ m#~/auth# && -z env('AuthUsername') && -z J%{HTTP:X-Auth-Tokenl}">
Redirect 307 "%{REQUEST_SCHEME}://%{HTTP_HOST}/auth/login?url=}{REQUEST_URI}"
</If>

<Location /rsconnect/>
ProxyPass http://rstudio-connect-host:3939/ connectiontimeout=5
ProxyPassReverse /

RequestHeader set X-RSC-Request "%{REQUEST_SCHEME}s://%{HTTP_HOST}s%{REQUEST_URI}s"
<If "-n env('AuthUsername')">
RequestHeader set X-Auth-Username "Y{AuthUsernamel}e"
</1f>
<Else>
RequestHeader unset X-Auth-Username
</Else>

RewriteCond J%{HTTP:Upgrade} =websocket
RewriteRule /rsconnect/(.*) ws://rstudio-connect-host:3939/$1 [P,L]
RewriteCond %{HTTP:Upgrade} !=websocket
RewriteRule /rsconnect/(.*) http://rstudio-connect-host:3939/$1 [P,L]
</Location>
</VirtualHost>

10.9.4 Configuring Proxied Authentication

To configure RStudio Connect to use proxied authentication, set Authentication.Provider to proxy.

58

; /etc/rstudio-connect/rstudio-connect.gcfg
[Authentication]
Provider = proxy

Proxied authentication requires that you set Server.Address to point at your proxy server. If you do not
configure Server.Address, the browser may not have all its requests routed through your authenticating
proxy. See Section 2.2.1 for more information about Server.Address.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]
Address = https://myproxy.company.com/

You can customize the name of the header that your authentication server will send upon a successful
authentication. By default, this key name is X-Auth-Username.

; /etc/rstudio-connect/rstudio-connect.gcfg

[ProxyAuth]
UsernameHeader = X-Auth-Username

10.9.5 Troubleshooting Proxied Authentication

e “Rejected insecure proxy authentication attempt” appears in the server logs, users cannot log in

1. Ensure that the proxy is configured to delete the username header from incoming requests
(X-Auth-Username by default)

2. Ensure that users are connecting to RStudio Connect by its proxy, and not directly to the server. As
noted above, your network should be configured to make non-proxied connections to RStudio Connect
impossible.

e Attempts to deploy to RStudio Connect from the IDE fail because users are redirected to a Single
Sign-On page.

1. Ensure that the proxy is configured to pass through all requests that set the X-Auth-Token header.

2. Ensure that the user has the rsconnect package with at least version 0.8.7 installed. If not,
and if the package isn’t available from CRAN, it may be installed from the R console using
devtools: :install_github('rstudio/rsconnect')

10.9.6 Groups

Groups are not supported when using proxied authentication.

11 User Management

11.1 User Roles

Every RStudio Connect user account is configured with a role that controls their default capabilities on the
system. Data scientists, analysts and others working in R will most likely want “publisher” accounts. Other
users are likely to need only “viewer” accounts.

The Authorization.DefaultUserRole property specifies the role for new accounts and defaults to viewer.
Authorization.DefaultUserRole may be either viewer or publisher; new accounts are not permitted to
automatically have the administrator role. For all authentication providers, the first user is always created
as administrator.

59

Note: There are no restrictions regarding roles for the users created via the Connect Server API.

Administrator RStudio Connect administrator accounts have permissions which allow them to manage the
service. This includes setting the role of an account and configuring email settings. Administrators may
or may not be system administrators. The specific capabilities of an administrator are documented
here.

Publisher Accounts with a “publisher” role are allowed to deploy content into RStudio Connect. They can
also help manage another user’s content when made a “collaborator” of that content.

Viewer “Viewer” accounts can be added as a viewer to specific content. They can discover that content
through the RStudio Connect dashboard and see its settings. Viewers can also email themselves copies
of documents they are permitted to see.

Anonymous An anonymous visitor to RStudio Connect who is not authenticated with the system can view
content that has been marked as viewable by “Anyone”.

Note: Any logged-in user can list all the other existing users. To limit who can list users use the
UsersListingMinRole property within the Authorization configuration section to specify the
minimum role allowed to list users.

For example: Authorization.UsersListingMinRole = "administrator" will allow only ad-
ministrators to list all users while publishers and viewers would only see themselves.

This setting does not affect the ability publishers have to add other users to content as collaborators
or viewers.

11.2 User Provisioning

How a user gets created in RStudio Connect depends on the capabilities offered by the configured authentication
provider. See 10

11.2.1 Password

Note: Sending emails is a prerequisite for password authentication. See 2.2.4

The users can be created by an admin or they can register themselves through the RStudio Connect dashboard.
The Connect Server API can also be used to create users ahead of the first login.

The users created by an admin or via Connect Server API without a password will receive an email confirmation
which should be used to configure a password.

Existing user accounts can reset their passwords through the Connect login page.

11.2.1.1 Self Registration

When using password authentication, users can self-register by clicking the “Sign Up” button on the login page.
Self-registered accounts will be created with the role specified in the Authentication.DefaultUserRole
property (see 11.1).

If you wish to disable self-registration, please use the configuration setting Password.SelfRegistration =
false. See A.11

When self-registration is disabled, the first account (the admin) is still created using self-registration. All
other accounts must be created by an administrator.

60

11.2.2 OAuth

OAuth users are created in RStudio Connect upon the first successful login attempt.

The authentication will happen entirely in the Google Auth engine which once completed will return the
remote user information to RStudio Connect.

Note: User search support is conditional to your Google Auth infrastructure. See 10.7

New users can also be created ahead of their first login by searching based on their email or name and then
associating the remote user found in the results with some content as either a viewer or collaborator.

Note: New users can only be selected as collaborators when Authorization.DefaultUserRole
= publisher.

Currently there is no support in the Connect Server API for adding OAuth users program-
matically.

11.2.3 LDAP

LDAP users are created in RStudio Connect upon the first successful login attempt.
Note: To restrict which users can login, see the setting LDAP.PermittedLoginGroup.

RStudio Connect will forward the entered LDAP credentials to the LDAP or Active Directory server which
once authenticated will return the remote users information.

Note: User search support for LDAP requires bind credentials or anonymous bind. See 10.6

New users can also be created ahead of their first login by searching based on their email or name and then
associating the remote user found in the results with some content as either a viewer or collaborator.

Note: New users can only be selected as collaborators when Authorization.DefaultUserRole
= publisher.

Currently there is no support in the Connect Server API for adding LDAP users program-
matically.

11.2.4 Proxy

Proxy authentication will create users in RStudio Connect upon the first successful login attempt.

The authentication happens entirely in the Proxy placed in front of RStudio Connect which expects to receive
from the former a HTTP header containing the username of the authenticated remote user account.

The Connect Server API can be used to create Proxy users. This option enables associating users with
content ahead of their first login attempt.

Note: The username is the user’s unique identification in Connect. Users created via the API
must match exactly the username expected to be received through the authentication proxy.

Currently, there is no support for creating Proxy users manually via the Connect dashboard.

11.2.5 PAM

PAM authentication will create users in RStudio Connect upon the first successful login attempt.

PAM authentication relies on local Unix accounts. Users must login to RStudio Connect with their Unix
credentials which is authenticated by the Linux system hosting Connect.

61

The Connect Server API can be used to create PAM users. This option enables associating users with content
ahead of their first login attempt.

Note: The username is the user’s unique identification in Connect. Users created via the API
must match exactly the username for the respective Unix user.

Currently, there is no support for creating PAM users manually via the Connect dashboard.

11.3 Group Support

Groups can be used to associate multiple users to content as viewers or collaborators.

An administrator in RStudio Connect can use the dashboard to create groups and to manage their members.
Group support is enabled for Password and OAuth authentication providers.

Note: New remote OAuth user information is stored in RStudio Connect when a OAuth user is
associated with a group. This is similar to the association with content.

Currently, there is no group support for PAM or Proxy authentication providers.

11.3.1 LDAP Groups

RStudio Connect needs to be configured to automatically recognize LDAP groups. See 10.6.
LDAP groups must be managed directly through LDAP or Active Directory.

Note: Remote LDAP group information is stored in RStudio Connect when the LDAP group is
associated with content.

11.4 User Permissions

Administrators and Publishers can be assigned permissions for content published to RStudio Connect.

11.4.1 All Content
Anonymous Visitors Anonymous users can access content listed for Anyone. Anonymous viewers access
content through direct URLs and will not have any view into Connect.

Viewers “Viewers” can sign into the Connect dashboard and discover and access content listed for Anyone,
A1l users - login required, and content for which they are granted access.

Collaborators “Collaborators” can change access controls and add Viewers and other Collaborators.

Administrators “Administrators” have all the permissions of Collaborators. Administrators are not
automatically added to content and will not see all content on their homepage. Administrators can
proactively add themselves as Collaborators or Viewers to any content. Administrators can set vanity
URLs and change the RunAs user. Administrators and the original content owner can delete content.

11.4.2 R Markdown Reports

Access controls and user privileges apply to every public version of a report. For example, if the default
version of a report is accessible to Anyone, all public versions will be accessible to Anyone.

Anonymous Visitors Every version of a report has a unique URL (accessible by opening the content with
‘Open Solo’). Reports must be listed for Anyone for the URL to be available to anonymous users.

62

Viewers “Viewers” have the ability to view a report through the Connect dashboard. They can discover
and toggle between public versions of a report. They can email themselves the current version of a
report. They can not see parameters for different versions of a report. They can see the distribution
and schedule for public versions.

Collaborators “Collaborators” have the privileges of Viewers and additionally can: view parameters for
public versions, change parameters and run ad hoc reports, create new versions, schedule versions, setup
distribution lists, and request reports to be refreshed. Collaborators can also create private versions
that are not discoverable or accessible by any other user.

11.4.3 Shiny Applications & Plumber APIs

Collaborators “Collaborators” can change the runtime settings for Shiny applications and Plumber APIs.

11.5 Administrator Capabilities

Administrative users on RStudio Connect are empowered to inspect and manage various settings on the server.
Regardless of their level of privilege on some piece of content (viewer, collaborator, or neither), administrators
can manage collaborators and viewers on content, manage the runtime settings for Shiny applications and
Plumber APIs, and adjust the schedules for R Markdown documents. Additionally, only administrators can
modify the Vanity Path and RunAs settings for content through the web dashboard; they can do so even on
content that they don’t have the ability to view the content.

Administrators do not have implicit rights to view content or download the source bundles. If an administrator
visits a report without viewership privileges to the report, they will see an error message rather than the
report’s content. Despite being unable to see the contents of the report, administrators can still manage the
settings for all content. Because an administrator has the ability to manage the collaborators and viewers of
others’ content on the system, they can choose to add themselves as a viewer or collaborator on the report
to gain access. Administrative overrides of permissions on content require that the administrator take an
explicit action which is captured in the audit log.

11.6 Locked Accounts

You can prohibit a user from accessing RStudio Connect by “locking” their account. This control is available
to administrative users when editing user profile information in the RStudio Connect dashboard.

Locked users are prohibited from signing into RStudio Connect, deploying content, and otherwise interacting
with the service.

A locked account is not deleted and deployed content continues to be available. A non-personal report
configured with scheduling and distribution will continue to execute according to its schedule. A locked user
no longer receives scheduled content at their email address.

Content owned by a locked user can be deleted by a collaborator or by an administrative user. Each piece of
deployed content must be deleted individually; there is no bulk removal.

A locked user can be subsequently unlocked. All their previously allowed abilities are immediately restored.

11.7 Username Requirements

Connect’s username requirements vary depending upon the authentication provider. Please see 10.3 for more
information on username requirements.

63

11.8 User Renaming

Administrators may alter the usernames of existing users on the system regardless of the current authentication
system. Users will still be able to access their deployed content and content that has been shared with them.
If they have existing vanity URLs with their username incorporated, none of those will be altered. They will,
of course, need to use the new username when logging in.

If the user has authenticated inside of the RStudio IDE, they will still be able to deploy using a previous
connection; however, the IDE will continue displaying their old username during deployments. To minimize
the risk of future ambiguity, we recommend that the user disconnect and reconnect their IDE to RStudio
Connect so that the valid username is displayed.

11.9 Command-Line Interface

Connect includes a usermanager command for some basic user management tasks. This utility helps you list
users and modify user attributes in the event that no one can access a Connect administrative user account.

See Appendix B for more information on using the usermanager CLI to manage users.

12 Process Management

RStudio Connect launches R to perform a variety of tasks. This includes:

o Installation of R packages

¢ Rendering of R Markdown documents

e Running Shiny Applications

e Running a Shiny application to customize a parameterized R Markdown document.
e Running APIs using Plumber

¢ Running TensorFlow Model APIs

The location of R defaults to whatever is in the path. Customize the Server.RVersion setting to use a
specific R installation. See Chapter 14 for details.

12.1 Sandboxing

The RStudio Connect process runs as the root user. It needs escalated privileges to allow binding to protected
ports and to create “unshare” environments that contain the R processes.

RStudio Connect runs its R processes as an unprivileged user; both a system default and content-specific
overrides are supported. See Section 12.5 for details.

The “unshare” environment created for R execution involves first establishing a number of bind mounts and
then switching to the target unprivileged user. RStudio Connect uses unshare to alter the execution context
available to R processes. Within this newly established environment, a number of mount calls are made in
order to hide or isolate parts of the filesystem.

You can learn more about unshare here. The mount call is detailed here. Your local man pages will document
their behavior specific to your system.

The following locations are masked during R execution:

e The Server.DataDir directory containing all variable data used by RStudio Connect.
e The SQLite.Dir directory, which can optionally be placed outside the data directory.
e Configuration directories, including /etc/rstudio-connect.

64

http://man7.org/linux/man-pages/man2/unshare.2.html
http://man7.org/linux/man-pages/man2/mount.2.html

e The Server.TempDir/connect-workspaces directory, which contains temporary directories, one per
R process.

The following information is exposed during R execution:

o The packrat data directory (read-only except when installing packages).

o The R data directory (only when installing packages).

o The directory containing the unpackaged R code (Shiny, Plumber, and R Markdown).

e The document rendering destination directory (only for R Markdown).

e A per-process temporary directory specified in the TMPDIR environment variable of the R process. This
temporary directory is created under Server.TempDir/connect-workspaces.

When Applications.HomeMounting is enabled, the contents of /home are masked by an additional bind
mount as follows:

e The contents of /home are masked by the home directory of the RunAs user.
e If the RunAs does not have a home directory, an empty directory masks /home.

The path to the home directory is always available through the HOME environment variable. With
Applications.HomeMounting, the mounted path to the HOME directory is subject to change. Avoid
hard-coding paths to either /home and /home/username.

Running R applications, like Shiny apps and Plumber APIs, have write access to the directory containing the
unpackaged R code. This application directory is the working directory when launching an application. Data
written here will be visible to all processes associated with that application but are not visible to other R
processes. Application directory data remains available until that application is next deployed to RStudio
Connect. A deployment creates a new application directory containing only the deployed content.

RStudio Connect may launch multiple processes to service requests for an application. There is
no coordination between these processes. Applications that write to local files could experience
problems when different processes attempt to write to a single file.

For example, two different processes writing to the same file may see output incorrectly interleaved
or even overwritten.

We do not recommend using the file system for data persistence.

R Markdown documents have write access to the rendering destination directory and to a directory containing
the unpackaged R code. When RStudio Connect is rendering a document, it first makes a copy of the
unpackaged R code into a new, temporary directory so that simultaneous rendering processes are isolated
from each other and cannot corrupt each other’s output files. This temporary source directory is the working
directory when calling rmarkdown: :render. The destination directory is passed as the output_dir while a
temporary directory is passed as the intermediates_dir. The intermediate directory is transient and not
available after rendering completes. A new output directory is created whenever the document is rendered.
Data created during one rendering is mot visible to another.

R Markdown multi-document sites have a slightly different rendering pipeline than standalone documents.
RStudio Connect uses the rmarkdown: : render_site function, which does its rendering in-place. The content
from the source directory is copied into the rendering destination directory in preparation for rendering. Site
rendering has write access to the destination directory. Access to the original source directory is not provided
because the source content is duplicated in the destination directory

The rmarkdown: :render_site call usually places its output into a subdirectory (typically, ’_site’). The
contents of this output subdirectory will be moved to the root of the rendering destination directory, replacing
any other content. No post-rendering file movement occurs if rmarkdown: :render_site is instructed to
render into the current directory instead of a subdirectory. This means that both source and output files will
be available for serving.

We recommend against configuring rmarkdown: :render_site to write its output into the current
directory. Rendering the site into a subdirectory (the default) allows RStudio Connect to remove

65

source from the output directory.

RStudio Connect serves rendered content from the document output directory. This content remains available
until a subsequent rendering is successful and activated (if requested). Neither incomplete nor unsuccessful
document renderings affect the availability of previously rendered content.

12.2 Temporary Directory

Each R process started by RStudio Connect is given its own unique temporary directory. These directories
are created under Server.TempDir/connect-workspaces.

Server.TempDir’s default value is obtained by first checking the TMPDIR environment variable for a path
and falls back to /tmp otherwise.

You may wish to override Server.TempDir if the default temporary directory has too little space or is
mounted with the noexec option.

Note: If you do override Server.TempDir please ensure the location can be reached by, read from,
and written to by any user on the system. On most systems, temporary directories typically have
permissions of 1777.

You can learn more about the noexec option here.

12.3 Shiny Applications & Plumber APIs

Most of the R processes started by RStudio Connect are batch-oriented tasks. R is invoked, does a narrow
set of work, and then exits. Shiny applications and Plumber APIs are different and may see an R process
handle many requests for many users over their lifetimes. Both Shiny Applications and Plumber APIs are
live applications that react to user requests on-demand.

RStudio Connect launches an R process tied to a live application when the first request arrives for that
application. That R process will continue to service requests until it becomes idle and eventually terminated.
If there is sufficient traffic against that application, RStudio Connect may launch additional processes to
service those requests.

There are a number of configuration parameters which control the conditions under which processes for
applications are launched and eventually reaped. The default values are appropriate for most applications
but occasionally need customization in specialized environments. Section A.20 explains each of the options.

We recommend that adjustment to these runtime properties be done gradually.

12.4 TensorFlow Model APIs

TensorFlow Model APIs have a similar lifecycle to Plumber APIs. They are live processes that handle user
requests on demand. TensorFlow Model API processes do not run R. However, the same per-process and
global scheduler settings may still apply to TensorFlow Model API processes.

TensorFlow Model APIs may also be run within a supervisor script if one is provided. The API server requires
access to the app’s content directory and to shared object files and their dependencies.

12.5 User Account for R Processes
The RStudio Connect installation creates a local rstudio-connect user account. This account runs all

the R processes; root does not invoke R. If you would like a different user to run R, customize the
Applications.RunAs property.

66

http://man7.org/linux/man-pages/man8/mount.8.html#FILESYSTEM-INDEPENDENT_MOUNT_OPTIONS

Administrators can customize the RunAs user on a content-specific level. This means that different applications
and R Markdown reports can be run using different Unix accounts. This setting can be found on the Access
tab when editing content settings. Publishers and Viewers are prohibited from changing the RunAs user on a
content-specific level.

If you choose to specify a custom RunAs user for content, that user must be a member of the Unix group that
is the primary group of the Applications.RunAs user.

The rstudio-connect user, for example, has a primary group also named rstudio-connect.
Any Unix account configured as a custom RunAs user for a Shiny application, Plumber API, or R
Markdown report must be a member of the rstudio-connect group.

Installation of R packages always happens as the Application.RunAs user. An application or R Markdown
report may override its RunAs setting; this alters how the deployed code is executed and does not impact
package installation. See Section 12.1 for more information about process sandboxing.

12.6 Current user execution
RStudio Connect can use a local Unix account associated with the currently logged-in user when executing
Shiny applications or Shiny documents. This feature requires that user authentication use PAM.

See Section 10.8 for information about using PAM for user authentication.

The Applications.RunAsCurrentUser property specifies that content can be configured to execute as the
currently logged-in user.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Applications]
RunAsCurrentUser = true

Administrators can now customize the RunAs settings to permit current-user execution on a content-specific
level. The Access content setting tab offers the option of executing using “The Unix account of the current
user”.

Content accessed anonymously will execute as the specified fallback RunAs user.
See Section 12.5 for more information about RunAs customization.

Content execution settings are not altered when RunAsCurrentUser is enabled. The RunAsCurrentUser
setting permits current-user execution but by itself does not change how R processes are launched. Each
Shiny application or Shiny document must explicitly request current-user execution.

All Unix accounts used to execute R must be members of the Unix group that is the primary group of the
Applications.RunAs user. Applications are not permitted to launch if the Unix account associated with the
logged-in user does not have the proper group membership.

The Applications.RunAs setting uses the rstudio-connect user by default. This user has a
primary group also named rstudio-connect. Any Unix account that may be used to execute
applications or R Markdown reports must be a member of the rstudio-connect group.

12.7 PAM sessions

Note: Please see the special instructions at the bottom of this section for running RStudio Connect
on Ubuntu 14.04 (Trusty Tahr)

RStudio Connect can use PAM to establish the environment and resources available for R sessions.

See Section 10.8 for information about using PAM for user authentication.

67

http://www.linux-pam.org/

PAM sessions are enabled with the PAM.UseSession setting.

; /etc/rstudio-connect/rstudio-connect.gcfg
[PAM]
UseSession = true

The default PAM service name used for PAM sessions is su. This gives RStudio Connect the ability to launch
processes as the specified user without requiring a password.

You can customize the PAM service name used for PAM sessions by customizing the PAM.SessionService
setting.

; /etc/rstudio-connect/rstudio-connect.gcfg
[PAM]
SessionService = rstudio-connect-session

The SessionService must contain the PAM directive that enables authentication with root privileges.
Otherwise, basic R processes will not run, and will return error code 70.

Allows root to su without passwords (required)
auth sufficient pam_rootok.so

Ubuntu 14.04 (Trusty Tahr) uses upstart as init by default, but also uses systemd-logind to clean up
processes from closed user sessions. There is a known issue where PAM.UseSession causes this specific host
configuration to rapidly terminate R processes, returning error code 129.

If you enable PAM. UseSession, you also need to edit the upstart configuration file at /etc/init/rstudio-connect.conf,
replacing the line beginning exec /opt/rstudio-connect/bin/connect with the following:

exec su -s /bin/sh -c 'exec "$0" "$@"' root -- /opt/rstudio-connect/bin/connect \
--config=/etc/rstudio-connect/rstudio-connect.gcfg >> /var/log/rstudio-connect.log 2>&1

After altering rstudio-connect.conf, trigger an upstart configuration reload and then restart RStudio
Connect.

$ sudo initctl reload-configuration
$ sudo stop rstudio-connect
$ sudo start rstudio-connect

Changing the rstudio-connect.conf in this way has considerable side effects because it is the equivalent of
opening a su session for root and leaving it open for the life cycle of the RStudio Connect daemon.

If this solution is unacceptable, alternative solutions may include:

o Upgrading the host to Ubuntu 16 or later

o Updating systemd-logind to be newer than v204

e Altering the init provider to use systemd instead of upstart
o Disabling systemd-logind on the host

12.7.1 PAM Credential Caching (Kerberos)
Note: RStudio Connect’s PAM cache is encrypted and is not stored on disk. The credentials
must expire after a certain period of time.

RStudio Connect can be configured to securely cache a user’s PAM credentials when they log in to RStudio
Connect. This enables RStudio Connect to let users run R processes as their current UNIX account when the
PAM profile requires a user’s credentials, such as when using Kerberos.

The following config settings are required for credential caching to be enabled:

68

; /etc/rstudio-connect/rstudio-connect.gcfg
[Applications]
RunAsCurrentUser = true

[PAM]

UseSession = true ,; Enable PAM sessions

ForwardPassword = true ; Forward the current user's password into the PAM session
PasswordLifetime = 12h ; Cache passwords for 12 hours after login
AuthenticatedSessionService = YOUR_PAM_SERVICE_HERE ; PAM service that accepts credentials

Replace 12h with the amount of time you would like credentials to be cached. Credential lifetime is counted
from the moment the user logs into RStudio Connect. It is not tied to the user’s web session, except that
logging in again will restart the timer for that user’s credentials.

The AuthenticatedSessionService setting is similar to SessionService, except that it should accept user
credentials and validate them. For example, a PAM service that uses the host’s Kerberos configuration to
expose functionality could be:

auth required pam_krbb.so

account [default=bad success=ok user_unknown=ignore] pam_krb5.so
password sufficient pam_krbb5.so use_authtok

session requisite pam_krb5.so

12.8 Path Rewriting

The sandboxing used by RStudio Connect involves bind mounts which map physical locations on disk onto
different directory structures at runtime. Paths used by your R code use these sandboxed locations. If you
need to find the physical file on disk, you will need to undo the path transformation.

This section gives some examples of path rewriting and offer some ways of finding the file you need.

Let’s start with an app.R file that describes a Shiny application. This file will be in the apps/XX/YY/ directory
underneath the Server.DataDir location. The XX and YY path components correspond to the application ID
and bundle (or deployment) ID for this version of your application. This directory is available at runtime as
/opt/rstudio-connect/mnt/app/.

The directory structure of /opt/rstudio-connect/mnt/ is just a number of empty directories. The “unshare”
environment created during sandboxing allows RStudio Connect to associate different application directories
with these mount directories.

Here are some common path transformations that may be helpful. All of the physical paths are beneath
the Server.DataDir hierarchy that defaults to /var/lib/rstudio-connect. All of the sandbox paths are
beneath the mount directory /opt/rstudio-connect/mnt/. This location is not customizable.

Physical path Sandbox path
DataDir/apps/XX/YY/ MountDir/app/ (non-renders)
DataDir/reports/v2/XX/YY/temp.render.TT MountDir/app/ (renders)
DataDir/reports/v2/XX/VV/RR MountDir/report/
DataDir/R MountDir/R
DataDir/packrat MountDir/packrat

Here are some actual path transformations using the default Server.DataDir location:

A source Shiny application
/var/1lib/rstudio-connect/apps/4/7/app.R

69

=> /opt/rstudio-connect/mnt/app/app.R

A source Plumber API
/var/lib/rstudio-connect/apps/38/10/plumber.R
=> /opt/rstudio-connect/mnt/app/plumber.R

A source R Markdown document
/var/lib/rstudio-connect/reports/v2/8/12/temp.render.639085504/index . Rmd
=> /opt/rstudio-connect/mnt/app/index.Rmd

An HTML document rendered from that R Markdown document
/var/lib/rstudio-connect/reports/v2/8/2/17/index.html
=> /opt/rstudio-connect/mnt/report/index.html

A staticly deployed document
/var/lib/rstudio-connect/apps/17/21/index.html
=> /opt/rstudio-connect/mnt/app/index.html

The Shiny package inside the packrat cache
/var/lib/rstudio-connect/packrat/3.2.5/v2/library/shiny/
28d6903a44dc53bd4823fa43ccdc08e5/shiny
=> /opt/rstudio-connect/mnt/packrat/3.2.5/v2/library/shiny/
28d6903a44dc53bd4823fa43ccdc08e5/shiny

12.9 Program Supervisors

You may need to modify the environment or resources available to R processes prior to R being launched.
This can be accomplished using a program supervisor using the Applications.Supervisor configuration
setting.

The supervisor command is provided the full R command-line, which MUST be invoked by the supervisor.
The process exit code from R MUST be returned as the exit code of the supervisor. The file descriptors for
standard input, output, and error MUST NOT be intercepted by the supervisor.

A supervisor is executed as the appropriate RunAs user. Package installation always uses the
Applications.RunAs user. Other R processes will use the content-specific RunAs account, falling
back to Applications.RunAs if no override was configured. See Section 12.5 for details.

Supervisors run within the sandbox established for any R process. See Section 12.1 for more information
about process sandboxes.

RStudio Connect configures the TMPDIR, HOME, and RSTUDIO_PANDOC environment variables for launched R
processes. RStudio Connect also manages package installation and references. Avoid altering any of this
behavior in program supervisors.

12.9.1 Example Supervisors

Here is a configuration that uses the nice command to lower the priority of all R processes. See http:
//linux.die.net/man/1/nice for details about nice. Because process supervisors are run as a RunAs user and
not as root or another super-user, you may not be permitted to assign a negative (higher priority) privilege.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Applications]
Supervisor = nice -n 2

70

http://linux.die.net/man/1/nice
http://linux.die.net/man/1/nice

Here is a configuration that uses a custom script to prepare a custom execution environment before finally
running R.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Applications]
Supervisor = /some/script/that/prepares/an/environment.sh

Here is an example supervisor that echos its arguments, sets an environment variable, then invokes whatever
arguments have been passed.

#!/bin/bash

echo arguments: "$@"
echo

export COMPANY_DATA_HOME="/data/resides/here"

Ezecute the target process after the environment is established.
All customization must happen before this "exzec”.
exec "$Q"

The argument list of the supervisor is the full command-line of the target command. The supervisor MUST
invoke this target command using exec or an equivalent technique.

Your organization may use shell initialization scripts to establish a particular environment. This
environment might not be completely compatible with how RStudio Connect attempts to launch

R.

We recommend building supervisor scripts gradually and carefully. Changes to the environment
can alter how your content executes or even prevent R from running correctly.

12.10 Using the config Package

The config package makes it easy to manage environment specific configuration values in R code. For
example, you might want to use one value for a variable locally, and another value when deployed on RStudio
Connect. The package vignette contains more information.

The desired configuration is identified to the config package by the R_CONFIG_ACTIVE environment variable.
By default, R processes launched by RStudio Connect set R_CONFIG_ACTIVE to rsconnect. The value can
be changed by modifying the Applications.RConfigActive configuration setting. Note that the value of
R_CONFIG_ACTIVE is not available during package installation.

13 Content Management

RStudio Connect provides flexibility over how uploaded content is configured and shared.

13.1 Sharing Settings

Each deployment in RStudio Connect can have specific access controls which specify which users are allowed
to view and/or edit that content.

71

https://github.com/rstudio/config

13.1.1 Collaborators

The list of collaborators enumerates the users allowed to edit and help manage the settings for a given
deployment. The content owner is always included as a collaborator. Collaborators must be either “publisher’
or “administrator” accounts.

)

13.1.2 Viewers
A viewer is able to view content. Any type of account can be made a viewer for a given piece of content.
Choose from the following options.

Anyone - no login required Any visitor to RStudio Connect will be able to view this content. This
includes anonymous users who are not authenticated with the system.

All users - login required All RStudio Connect accounts are permitted to view this content.

Specific users or groups Specific users (or groups of users) are allowed to view this content. Other users
will not have access.

You Only the owner of this content is able to view this content.

13.1.2.1 Limiting allowed viewership

Some organizations want to restrict the types of access that publishers and administrators can assign to
content.

The settings Applications.MostPermissiveAccessType and Applications.AdminMostPermissiveAccessType
limit the viewership options allowed to publishers and administrators, respectively.

These settings take the following values:
all The most permissive access type. Allows all viewership permissions.

logged_in Permits only logged-in viewership options. This includes allowing the content owner and specific
users and groups.

acl Content must explicitly enumerate specific users and groups.

There is not an access type that only allows the owner to view the content. Owner-only access is
implemented as an empty access control list (ACL).

The following example permits publishers to constrain viewership through access control lists while allowing
administrators to configure any access type.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Applications]

MostPermissiveAccessType = acl
AdminMostPermissiveAccessType = all

This next example prohibits content from being given unconstrained viewership. The restriction applies to
both publishers and administrators.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Applications]
MostPermissiveAccessType = logged_in

The access type of existing content is not automatically altered. The two access type settings limit which
permissions may be given to content. This restriction is enforced when content is created or modified.

72

13.2 Vanity Paths

All content receives a URL that includes its numerical ID at at the time of deployment — something like
https://rsc.company.org/connect/#/apps/982. Connect administrative users can create “vanity paths”
for content which make the content available at an additional, customized URL.

This setting can be found at the bottom of the “Access” tab when editing a piece of content. There you can
enter the path at which you want this content to be available and preview the complete URL. Once you
“Save” your content, you’ll be able to access your content at the new vanity URL.

Vanity URLs can not be nested inside of one another. So if a vanity URL /finance/ already exists,
you would not be able to create a new vanity URL at /finance/budget/. You may create sibling paths:
/finance/budget/ and /finance/quarterly/ may both exist concurrently.

13.3 Tags

You can use tags to organize content and make it easy for users to find content that they’re interested in.
To begin, create a tag schema in the “Tags” section of the Admin dashboard by creating one or more tag
categories. Define some tags, which can be nested any number of levels deep.

For example, if your data scientists are creating reports covering different geographical areas, you could create
a category called “Geographical Area”. Then, you could create tags such as “Americas” or “Asia” and nest
the tags “North America” and “South America” under “Americas”.

Only administrators can create and edit the tag schema. Categories and tags can be added, deleted, and
renamed. Once a tag or category is deleted, all tags nested under it are also deleted.

Collaborators can associate content with one or more tags in the “Tags” tab of the content settings sidebar.
Users can filter by tags to discover content, as long as they have permission to view that content.

For example, if multiple reports analyze the same set of data, those reports could be tagged with some
identifier, such as “FY2016 Q3” for the third quarter of the 2016 fiscal year. A report that analyzes the third
and fourth quarter could be tagged with “FY2016 Q3” and “FY2016 Q4”, and would appear when a user
filters for either “FY2016 Q3” or “FY2016 Q4"

13.4 Bundle Management

Content published to RStudio Connect is encapsulated in a “bundle” that contains the source code and
data necessary to execute the content. An application or report is updated by uploading a new bundle. Old
bundles are retained on disk until you reach the limit imposed by Applications.BundleRetentionLimit at
which point older bundles will be deleted.

Users can manage their own bundles in the dashboard by clicking the “Source Versions” button. Collaborators
can delete, download, activate, and view activation logs for their applications’ bundles. Activating a different
bundle is a way of “rolling back” or “rolling forward” to an older or newer version of your application,
respectively.

Activating an alternative bundle for a Shiny application will cause new incoming users to be directed to
the new version of the application but will not interrupt existing users of the application who are viewing
the previously activated bundle. For reports, activating an alternate bundle will immediately render the
newly activated bundle and promote it to be the authoritative version of that document. For parameterized
reports, only the default variant will be rerendered; other instances of the report will not automatically be
regenerated, but the next manual or scheduled update will be performed on the newly selected bundle.

When Activating an alternative bundle for a Plumber API, existing requests will be serviced by processes
already launched running the old code. New requests will be serviced by new processes running the new code.

73

13.5 API Keys

RStudio Connect allows users to access hosted content outside the web browser by utilizing API Keys -
e.g. via shell scripts. API Keys are enabled by default. To change this behavior please see Section 13.5.2.

13.5.1 How this Works

API Keys are associated with user accounts. They provide roughly the same level of access to RStudio
Connect as a user logged in via the browser would have.

If a user has a compromised API Key, the Key should be deleted as soon as possible. The administrator may
wish to lock the account if the user is having difficulty deleting the API Key.

To retrieve static content or to invoke Plumber endpoints via API Keys an HTTP request must be made
to the target URL of the published content. The request must contain an HTTP header whose key is
Authorization and value is set to Key API_KEY.

Authorization: Key ABCDEFGHIJKLMNO

API Keys have the same authorization access levels as the user that owns them. Someone who uses an API
Key will be able to view all content that the owner of the API Key has access to. API Keys are shared secrets
and as such they should be stored securely and only be given to trusted applications. It is advisable that
content requests be made securely over HT'TPS. If a user believes that an API Key has been compromised,
they can revoke just that key by deleting it.

For more details regarding API Keys please see the API Keys section in the User Guide.
To learn how to configure RStudio Connect to listen for HTTPS requests please see Section A.4.

13.5.2 Configuring API Keys

To disallow API Keys, set Authentication.APIKeyAuth to false.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Authentication]
APIKeyAuth = false

14 R

RStudio Connect offers a flexible way of deploying your Shiny applications, Plumber APIs, and R Markdown
content against a variety of R versions.

A compatible version of R is identified when content is deployed. That R installation is used any time R is
needed for that content. Package installation, starting a Shiny application or Plumber API, and rendering R
Markdown documents will all use the version of R discovered at deploy-time.

RStudio Connect allows different content to rely on different versions of R. For example, Alice’s R Markdown
document may require version 3.2.4 of R while Bob’s Shiny application needs R version 3.3.1. Those two
deployments using different R versions can coexist in RStudio Connect without conflict.

This chapter discusses RStudio Connect can be configured to support more than one version of R and how R
version compatibility is determined.

Available R installations are analyzed at startup. Connect logs the discovered R versions. Connect will fail to
start if no R installation can be found.

Changing any of the configuration items discussed in this chapter requires a restart of RStudio Connect.

74

14.1 Installing R

Ubuntu and Red Hat/CentOS/SUSE Linux distributions offer a version of R; installation of the system R is
detailed in sections 2.1.3 and 2.1.4.

If you are attempting to make additional R versions available side-by-side with the system version you
typically need to install from source. The RStudio Server documentation has a good reference for building
and installing R into alternate locations.

This RStudio Support article also includes R installation instructions.

14.2 Upgrading R

RStudio Connect supports running multiple versions of R. In most cases, upgrading R should consist of
building the new version of R and retaining the previous version. We strongly recommend supporting multiple
versions of R instead of upgrading and maintaining a single version of R. Supporting multiple versions of R is
the best way to ensure applications or reports published with specific package dependencies will continue to
run.

In cases where a single version of R is being managed, R can be upgraded using the system package manager
with the following steps:

1. Stop RStudio Connect; see 5.1
2. Follow the instructions to upgrade R.

For Ubuntu, be sure an up-to-date CRAN repo is in the source list, and then run:

$ sudo apt-get update
$ sudo apt-get install r-base --upgrade

For RedHat/CentOS:
$sudo yum update R

For SUSE, be sure to follow the install instructions in the [CRAN SUSE page] (https://cran.rstudio.
com/bin/linux/suse/) and then run:

$ sudo zypper update R-base

3. Start RStudio Connect; see 5.1

Following an upgrade, content dependent on R will be rebuilt on-demand. For example, during the next
execution of a scheduled R Markdown document, Connect will automatically reinstall and rebuild all of the
necessary packages before rendering the report. For Shiny applications and Plumber APIs, the reinstall
and rebuild will occur the first time the application is requested. During the package updates, Connect will
present a message and spinner indicating to the end user that the Shiny application will be available after
the packages are successfully installed and built for the new version of R.

Not all packages can be reinstalled and rebuilt on newer versions of R. Rebuilding and restoring
packages can take a significant amount of time and could delay or prevent the rendering of a
report or the availability of a Shiny application.

14.3 R Versions

RStudio Connect supports two ways of discovering R versions: scanning well-known locations and through
direct configuration. Connect will use the PATH environment variable to discover a version of R if one is not
otherwise found.

75

http://docs.rstudio.com/ide/server-pro/r-versions.html#installing-multiple-versions-of-r
https://support.rstudio.com/hc/en-us/articles/215488098-Installing-multiple-versions-of-R
https://cran.rstudio.com/bin/linux/suse/
https://cran.rstudio.com/bin/linux/suse/

14.3.1 Scanning

RStudio Connect can automatically scan for R in some well-known locations.

RStudio Connect scans each of the following directories to determine if they contain a full, single-version
installation:

/usr/1ib/R
/usr/1ib64/R
/usr/local/lib/R
/usr/local/1ib64/R
/opt/local/lib/R
/opt/local/1lib64/R

Each of these locations that contains an R installation will be available for use within RStudio Connect.
Connect also scans directories that often contain multiple R installations:

/opt/R
/opt/local/R

Any child directory that contains an R installation will be available for use within RStudio Connect.

Use the Server.RVersion setting or the r-versions file to explicitly enumerate R installations
if your organization uses a complicated directory hierarchy.

For example, any of the following installed versions of R will be automatically detected:

/opt/R/3.1.3

/opt/R/3.2.4
/opt/R/3.4.2-optimized-build
/opt/local/R/3.3.1

Symbolic links from any of these scan locations to alternate locations are permitted.

R version scanning happens by default. Disable version scanning with the Server.RVersionScanning
property.
; /etc/rstudio-connect/rstudio-connect.gcfg

[Server]
RVersionScanning = false

14.3.2 Direct Configuration

RStudio Connect can be instructed to use specific R installations through direct R version configuration.

Direct configuration can be used in combination with scanning to add R installations that are outside the
scanned locations. It is most commonly used when R version scanning is disabled - giving complete control
over the permitted R versions

14.3.2.1 R Versions

The Server.RVersion property can be used to specify alternate locations for installations of R. Specify this
property once for each R installation directory.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]

RVersion = /shared/R/3.3.1

RVersion = /shared/R/3.2.4

RVersion = /shared/R/3.1.3

76

The Server.RVersion is permitted to be a symbolic link to an R installation.

14.3.2.2 /etc/rstudio/r-versions

The /etc/rstudio/r-versions file is an alternative way of specifying R versions and is shared with RStudio
Server. List your R installations in this file. Note that the r-versions file is not created by default and will
need to be created.

/shared/R/3.3.1
/shared/R/3.2.4
/shared/R/3.1.3

Paths enumerated in the r-versions file are permitted to be symbolic links to R installations.

14.3.2.3 Excluding Versions

If you have versions of R that are picked up by automatic scanning but which you would like to exclude, disable
R version scanning and explicitly specify all versions you would like to use in the /etc/rstudio/r-versions
file or with the Server.RVersion configuration property.

Here is an example configuration that disables scanning, and specifies precisely two R versions that will be
available for use.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]

RVersionScanning = false

RVersion = /opt/R/3.3.1

RVersion = /opt/R/3.2.4

14.4 R Version Matching

RStudio Connect attempts to find an R installation that is appropriate for your content. By default, it
applies a “nearest” matching approach. This algorithm attempts to always find a version of R to use with
your content. More deployments will succeed but not always with the same version of R that is used by the
author.

If you would prefer a strict association between authored and deployed R versions, you can choose to use an
“exact” matching approach.

The “nearest” matching algorithm is the most flexible option and favors publication of your content over
precise duplication of the authoring environment.

The “major-minor” algorithm is a middle ground between “nearest” and “exact”. It requires exact MAJOR.MINOR
matching but is flexible about the patch level. This is a useful option when your desktop and server may
occasionally have different update cycles when installing bug fix releases.

An inconsistent version of R occasionally causes problems when installing package dependencies. For the best
results, make sure that RStudio Connect has access to the same versions of R used to author content.

The R version matching approach is controlled with the Server.RVersionMatching configuration setting.

nearest Find an R installation that is close to the version of R used when authoring the Shiny application,
Plumber API, or R Markdown document. This algorithm uses the ordered tests when looking for
MAJOR.MINOR.PATCH version matches:

1. Use exact version match.
2. If there are matching MAJOR.MINOR releases, use least-greater version.
3. If there are matching MAJOR.MINOR releases, use latest of these.

7

http://docs.rstudio.com/ide/server-pro/r-versions.html#determining-available-versions
http://docs.rstudio.com/ide/server-pro/r-versions.html#determining-available-versions

4. Use least-greater version across all releases.
5. Use latest across all releases.

major-minor Find an R installation that is close to the version of R used when authoring the Shiny
application, Plumber API, or R Markdown document requiring an exact MAJOR.MINOR version match.
If a compatible version cannot be found, content will fail to deploy. The algorithm is a constrained
“nearest” search:

1. Use exact version match.
2. If there are matching MAJOR.MINOR releases, use least-greater version.
3. If there are matching MAJOR.MINOR releases, use latest of these.

exact Finds an R installation that exactly matches the version of R used when authoring the deployed
content. If a matching version cannot be found, content will fail to deploy.

15 Package Management

15.1 Package Installation

RStudio Connect installs the R package dependencies of Shiny applications, Plumber APIs, and R Markdown
documents when that content is deployed. The RStudio IDE uses the rsconnect and packrat packages to
bundle the relevant source code and document its dependencies. RStudio Connect then uses packrat to
duplicate those package dependencies on the server.

Packrat attempts to re-use R packages whenever possible. The shiny package, for example, should be
installed only when the first Shiny application is deployed. This installation of shiny is placed into the
packrat package cache as well as associated with that Shiny application deployment. Subsequent Shiny
applications can use that cached package installation and see faster deployments as a result. Packrat also
allows multiple versions of a package to exist on a system. Two Shiny applications referencing different
versions of shiny will reference the correct Shiny installation and these two packages will not conflict with
each other.

Resolving which packages need installing and which are already available all happens when you deploy content
to RStudio Connect.

15.1.1 Package compilation

Some packages contain C and C++ code components. That code needs to be compiled during package
installation. The Server.CompilationConcurrency setting controls the number of concurrent compilation
processes used by package installation.

The default value for the Server.CompilationConcurrency setting is derived from the number of available
CPUs with the formula max(1, min(8, (cpus-1)/2)). This property controls the number of concurrent
C/C++ compilations during R package installation. This value makes it less likely for package installs to
encounter memory capacity issues on lightweight hosts while allowing more concurrency on high-capacity
servers.

CPUs 1 2 4 6 8 16 24 32
CompilationConcurrency 1 1 1 2 3 7 8 8

You can customize Server.CompilationConcurrency to force a specific level of concurrency.

; /etc/rstudio-connect/rstudio-connect.gcfg
[Server]

78

https://github.com/rstudio/rsconnect
https://github.com/rstudio/packrat

CompilationConcurrency = 1

15.1.2 External Package Installation

Warning: Adding external packages decreases the reproducibility and isolation of content on
RStudio Connect, and should only be done as a last resort.

You can indicate that a system-wide installation of a package should be used instead of one fetched by packrat.
To do this, set each system package name to the External option under the Packages heading.

For example, RJava or ROracle are large installations, potentially with odd dependencies, such as your choice
of JDK and/or Oracle InstantClient. First, you would install these packages in every R installation that
RStudio Connect will be using. Then, you would configure RStudio Connect with the following parameters:

; /etc/rstudio-connect/rstudio-connect.gcfg
[Packages]

External = ROracle

External = RJava

This is the same as settings the packrat option external.packages to c("ROracle", "RJava") using
packrat::set_opts. The external .packages option instructs packrat: :restore to load certain packages
from the user library. See the packrat documentation for more information.

15.1.3 Proxy Configuration

If the http_proxy and/or https_proxy environment variables are provided to RStudio Connect when the
server starts, those variables will be passed to all R processes run by RStudio Connect, including the package
installation process.

Setting the Packages.HTTPProxy and Packages.HTTPSProxy configuration options under the Packages
heading will provide their values as http_proxy and https_proxy only when packages are installed during
deployment. This could be useful if you have a special proxy just for downloading package dependencies. You
could regulate access to unapproved packages in non-CRAN repositories by rejecting certain URL patterns.

15.2 Private Repositories

Packrat records details about how a package was obtained in addition to information about its dependencies.
Most public packages will come from a public CRAN mirror. Packrat lets RStudio Connect support alternate
repositories in addition to CRAN.

Learn how to create your own custom repository; this directory can then be shared over HTTP or
through a shared filesystem.

Here are some reasons why your organization might use an alternate/private repository.

1. Internally developed packages are made available through a corporate repository. This is used in
combination with a public CRAN mirror.

2. All packages (private and public) are approved before use and must be obtained through the corporate
repository. Public CRAN mirrors are not used.

3. Direct access to a public CRAN mirror is not permitted. A corporate repository is used as a proxy and
caches public packages to avoid external network access.

RStudio Connect supports private repositories in these situations given that the deploying instance of R is
correctly configured. No adjustment to the RStudio Connect server is needed.

79

http://rstudio.github.io/packrat/commands.html
https://rstudio.github.io/packrat/custom-repos.html

Repository information is configured using the repos R option. Your users will need to make sure their
desktop R is configured to use your corporate repository.

RStudio IDE version 0.99.1285 or greater is needed when using repositories other than the public
CRAN mirrors.

We recommend using an .Rprofile file to configure multiple repositories or non-public repositories.

The .Rprofile file should be created in a user’s home directory.

A sample .Rprofile file with two different package repositories.
local({
r <- getOption("repos")
r["CRAN"] <- "https://cran.rstudio.com/"
r["mycompany"] <- "http://rpackages.mycompany.com/"
options(repos = r)

b

This .Rprofile creates a custom repos option. It instructs R to attempt package installation first from
"CRAN" and then from the "mycompany" repository. R installs a package from the first repository in "repos"
containing that package.

With this custom repos option, you will be able to install packages from the mycompany repository. RStudio
Connect will be able to install these packages as code is deployed.

For more information about the .Rprofile file, see help (Startup) in R. For details about package installation,
see help(install.packages) and help(available.packages).

15.3 Private Packages

Packages available on CRAN, a private package repository, or a public GitHub repository are automatically
downloaded and built when an application is deployed. RStudio Connect cannot automatically obtain
packages from private GitHub repositories, but a workaround is available.

We recommend using a private repository to host internal packages when possible. See Section
15.2 for details.

The configuration option Server.SourcePackageDir can reference a directory containing additional packages
that Connect would not otherwise be able to retrieve. This directory and its contents must be readable by
the Applications.RunAs user. Connect will look in this directory for packages before attempting to obtain
them from a remote location.

This feature has some limitations.

e The package must be tracked in a git repository so that each distinct version has a unique commit hash
associated with it.

o The package must have been installed from the git repository using the devtools package so that the
hash is contained in the DESCRIPTION file on the client machine.

If these conditions are met, you may place .tar.gz source packages into per-package subdirectories of
SourcePackageDir. The proper layout of these files is <package-name>/<full-git-hash>.tar.gz.

For example, if Server.SourcePackageDir is defined as /opt/R-packages, source bundles for
the MyPrivatePkg package are located at /opt/R-packages/MyPrivatePkg. A commit hash of
28547e90d17f44f3a2b0274a2aalca820fd35b80 needs its source bundle stored at the following path:

/opt/R-packages/MyPrivatePkg/28547e90d17£44f3a2b0274a2aalca820£d35b80.tar.gz

When private package source is arranged in this manner, users of RStudio Connect will be able to use those
package versions in their deployed content.

80

https://stat.ethz.ch/R-manual/R-patched/library/base/html/Startup.html
https://stat.ethz.ch/R-manual/R-patched/library/utils/html/install.packages.html
https://stat.ethz.ch/R-manual/R-patched/library/utils/html/available.packages.html

Be aware that this mechanism is specific to the commit hash, so you will either need to make many git
revisions of your package available in the SourcePackageDir directory hierarchy or standardize to a particular
git commit of the package.

16 Historical Information

This section describes the configuration and management of historical information, of which there are two
types. Metrics about resource usage over time (trends) are enabled with the Metrics.Enabled setting. More
discrete usage events are enabled with the Metrics.Instrumentation setting. Both settings are true, by
default; to disable either one, set it to false in your configuration file.

16.1 Historical Metrics

RStudio Connect uses a separate rserver-monitor process to record resource (CPU, memory, etc.) usage
over time. It is only active when historical metrics are enabled. The customization settings described in the
remainder of this section have no effect when Metrics.Enabled is off.

16.1.1 Historical Metrics Settings

Metrics data is written by default to a set of RRD files. This data is stored by default at
/var/lib/rstudio-connect/metrics. You can specify an alternate data path by using the DataPath
setting mentioned in Section A.22.

The rserver-monitor process runs (by default) with the same user account Connect uses to run its R
processes. By default, this user account is rstudio-connect (see the RunAs setting in Section A.17). You
can specify an alternate user account for the rserver-monitor process by modifying the User setting. See
Section A.22 for details.

RStudio Connect also supports logging of metrics to Graphite, and it supports disabling its default behavior
of logging to RRD. Please see Section A.22 for more options for configuring the historical metrics in Connect.

16.1.2 Historical Metrics Process Management

Connect automatically spawns a process (rserver-monitor) to help maintain historical data. If this process
exits, Connect will restart it in an attempt to record as much historical information as possible. Connect will
delay restarting rserver-monitor if it observes rapid, repeated failures.

Since the rserver-monitor needs permission to write data to the metrics data directory, Connect attempts
to ensure the necessary permissions at startup. When Connect starts, it grants ownership of the metrics data
directory to the user account that will be used to start rserver-monitor.

16.1.3 Historical Metrics Process Logging

The rserver-monitor process logs its output to syslog. If the process is unable to run, you can check the
system log (e.g., /var/log/messages or /var/log/syslog) for messages.

16.2 Historical Events

RStudio Connect can record event-style usage information which is intended to answer questions like, “Who
used my Shiny app and for how long?” This information is stored in dedicated tables in the database. When

81

http://oss.oetiker.ch/rrdtool/

using SQLite, this is handled automatically by creating a second database file named from SQLite.Name
with -instrumentation appended. For PostgreSQL, a second, full database URL can be provided in the
Postgres.InstrumentationURL setting. If it is not specified, it will default to the value of Postgres.URL.
This allows you to store the event data in the same place as the rest of the Connect information, in a different
schema, or even a different database, whichever meets your needs best. Please see Section 9.2 for more details
about using Postgres.

Note: There is currently no data retention policy so all data will always be kept. Data retention controls
will be added in a future release.

Note: This data is not migrated by the migrate tool (see 9.3).

The event information recorded by Connect is not currently presented in the dashboard or via an API.

16.2.1 Shiny Application Events

When a user opens a Shiny application, an event containing their user information and the length of their
session will be logged to the instrumentation database.

16.2.2 RMD and Static Report Events

When a user visits an RMD or report page (such as a plot), an event containing their user information and
information about the content visited will be logged to the instrumentation database.

16.2.3 User Login Events

When a user logs in to the Connect dashboard their user information will be logged to the instrumentation
database.

16.2.4 Server Node Session Events

Note: Node session events may be erroneous if you have multiple nodes with the same hostname and do not
reconfigure your node name, as explained below.

When a node is started, an event will be logged to the database containing a node name, the server start
time, and a periodically-updating heartbeat timestamp indicating the length of the node’s running session. A
node that exits cleanly will log true to the exited_cleanly column for its session.

If exited_cleanly is false, it means either:
e The node is still running. In this case, the heartbeat will continue to update.

e The node’s rstudio-connect process was terminated with SIGKILL, or the system lost power while
the process was running. Confirm this by cross-referencing the node’s log file with the row for the
session at issue. The log for that session will end abruptly in this case.

e The node was terminated with SIGTERM or SIGINT, but did not successfully write to the database before
being terminated with SIGKILL or before the system lost power. Confirm this by cross-referencing the
node’s log file, looking specifically for the line beginning with Caught SIGINT/SIGTERM. The log for
that session will end abruptly after that line in this case.

e The node was terminated with SIGTERM or SIGINT, but couldn’t write to the database for some other
reason. Confirm this by cross-referencing the node’s log file, looking specifically for Error storing
server exit time. The log for that session will contain that line in this case.

82

The node name defaults to the node’s hostname, but can be changed using the Server.NodeName configuration
setting or the RSTUDIO_CONNECT_NODE_NAME environment variable. The node name MUST be unique for
every node in your cluster. RStudio Connect cannot detect duplicate node names at this time, including the
situation where multiple nodes have the same hostname.

The heartbeat timestamp can be changed from its default of 30m by setting Metrics.InstrumentationServerHeartbeat
to another duration.

A Configuration Options

This appendix documents the RStudio Connect configuration file format and enumerates the user-configurable
options.

A.1 Configuration Basics

The RStudio Connect configuration file is located at /etc/rstudio-connect/rstudio-connect.gcfg. This
configuration is read at startup and controls the operation of the service.

A.1.1 File Format

The RStudio Connect configuration file uses the gcfg (Go Config) format, which is derived from the Git
Config format.

Here is an example of that format showing the different property types:

; Comment
[BooleanExamples]
propertyl = true
property2 = off
property3 1

[IntegerExamples]
Propertyl = 42
Property2 = -123

[DecimalExamples]
Propertyl = 3.14
Property2 = 7.
Property3 = 2
Property4 = .217
[StringExamples]

Propertyl = simple
Property2 = "quoted string"
Property3 = "escaped \"quote\" string"

[MultiStringExamples]
ListProperty = black
ListProperty = blue

ListProperty = green

[DurationExamples]

83

https://gopkg.in/gcfg.v1
http://git-scm.com/docs/git-config#_syntax
http://git-scm.com/docs/git-config#_syntax

Propertyl 1000000000
Property2 = 500ms
Property3 1ml5s ; comment with a property

Comments always start with a semi-colon (;) or hash (#) and continue to the end of the line. Comments can
be on lines by themselves or on a line with a property or section definition.

Configuration sections always begin with the name of the section bounded by square brackets. A section may
appear multiple times and are additive with the last value for any property being retained. The following
two configuration examples are equivalent.

[Example]
A = aligator
B=2

[Example]
A = aardvark
C = shining

[Example]

A = aardvark
B =2

C = shining

Each configuration property must be included in its appropriate section. Property and section names are
interpreted case-insensitively.

Property definitions always have the form:

Name = value

The equals sign (=) is mandatory.

A.1.2 Multi-value Properties

If a property happens to to be given more than once, only the last value is retained. The “multi” properties
are an exception to this rule; multiple entries are aggregated into a list.

[MultiExample]
Color = black
Color = blue

[NonMulti]
Animal = cat
Animal = dog

If Color is a multi-string property, both the “black” and “blue” values are used. If Animal is a normal string
property, only the value “dog” is retained.

A.1.3 Property Types

Configuration properties all have one of the following types:

string A sequence of characters. The value is taken as all characters from the first non-whitespace character
after equal sign to the last non-whitespace character before the end-of-line or start of a comment.
Double-quotes (") are supported, but usually unnecessary. A literal double-quote MUST be escaped and

84

quoted itself like QuotedValue = "J.R. \"Bob\" Dobbs". Strings containing the comment characters
; and # also need to be quoted.

multi-string A property that takes multiple string values. The property name is listed with each individual
input value. For example, providing Color = black and Color = blue results in two separate values.

boolean A truth value. The values true, yes, on, and 1 are interpreted as true. The values false, no, off,
and 0 are interpreted as false.

integer An integral value.

decimal A numeric value with an optional fractional component. Values with and without a decimal point
are allowed.

duration A value specifying a length of time. When provided as a raw number, the value is interpreted
as nanoseconds. Duration values can also be specified as a sequence of decimal numbers, each with
optional fraction and unit suffix, such as 300ms, 1.5h, or 1m30s.

Valid time units are ns (nanoseconds), us (microseconds), ms (milliseconds), s (seconds), m (minutes), h
(hours), and 4 (days).

version A string representing a version. A version may have one to four numeric components, separated by
periods or hyphens. Examples include 2, 2.5, 2.5.6,2.5.6.1, and 2.5-6-11.

Each configuration property documented in this appendix includes its description, data type, and default
value.

A.1.4 Reloadable Properties

Some properties are marked as “reloadable”. Sending a HUP signal to the Connect process causes the on-disk
configuration to be reread. The server is reconfigured with the latest values of these reloadable properties.
See 5.1 for details about sending a HUP signal to your Connect process.

Use a HUP signal when your configuration changes are limited to properties marked as reloadable.
Perform a full restart of RStudio Connect when changing other properties.

A.2 Server

The Server section contains configuration properties which apply across the whole of RStudio Connect and
are not appropriate for the other sections, which are generally narrower.

The properties which follow all must appear after [Server] in the configuration file.

DataDir The directory where RStudio Connect will store its variable data.
Type: string
Default: /var/lib/rstudio-connect

TempDir The directory that will contain all temporary directories needed by R processes. If TMPDIR
environment variable is not defined then /tmp.

Type: string
Default: $TMPDIR

LandingDir Specifies an optional path from which a customized landing page is served to logged-out users.
See examples/landing-page for a directory containing a sample landing page.

Type: string

85

Default: <empty-string>

EnableSitemap Specifies if RStudio Connect should provide a /sitemap.xml file enumerating the publicly
available apps.

Type: boolean
Default: false

RVersionMatching Specifies how RStudio Connect attempts to match R version associated with uploaded
content with the R versions available on the system. Allows values of nearest or exact.

Type: string
Default: nearest

RVersion Path to an R installation root. Multiple definitions can be used to provide multiple locations with
R.

Type: multi-string
Default: unspecified
RVersionScanning Scan for R installations in well-known locations.
Type: boolean
Default: true

CompilationConcurrency The amount of parallelism allowed to make during R package installs. This value
is passed to make as the value given to the —-jNUM flag. The value DEFAULT__CPUS is derived from
the number of available CPUs with the following calculation: max(1, min(8, (numcpu-1)/2)).

Type: integer
Default: #DEFAULT_CPUS

SourcePackageDir A directory containing source bundles for packages that are unavailable on either CRAN
or a public GitHub repository. Must be readable by the Applications.RunAs user.

Type: string
Default: <empty-string>

Address A public URL for this RStudio Connect server such as https://connect.company.com/. Must be
configured to enable features like including links to your content in emails.

Type: string
Default: <empty-string>

SenderEmail An email address used by RStudio Connect to send outbound email. The system will not be
able to send administrative email until this setting is configured.

Type: string
Default: <empty-string>
EmailSubjectPrefix A leading subject prefix for all mail sent by RStudio Connect.
Type: string
Default: [RStudio Connect]

ViewerKiosk When enabled, RStudio Connect does not prompt view-only users to request elevated privileges
when attempting to access restricted resources.

Type: boolean

86

Default: false

HideEmailAddresses When enabled, RStudio Connect will not expose email addresses in API requests or
its dashboard.

Type: boolean
Default: false

MailAll When enabled, RStudio Connect will allow scheduled and on-demand documents to send email to
all users of the system.

Type: boolean
Default: false
PublicWarning An HTML snippet used to inject a message into the RStudio Connect dashboard welcome
pages.
Type: string
Default: <empty-string>
Reloadable: true
LoggedInWarning An HTML snippet used to inject a message into the RStudio Connect recent views.
Type: string
Default: <empty-string>
Reloadable: true

ContentTypeSniffing If disabled, sets the X-Content-Type-Options HTTP header to nosniff. When
enabled, removes that header, allowing browsers to mime-sniff responses.

Type: boolean
Default: false

ServerName By default, Connect sets the Server HT'TP header to something like RStudio Connect v1.2.3.
This setting allows you to override that value.

Type: string
Default: RStudio Connect vX.Y.Z-NNNN
AccessLog Path to the file that RStudio Connect will use for its access logs. Disabled when empty.
Type: string
Default: /var/log/rstudio-connect.access.log

CustomHeader Custom HTTP header that should be added to responses from Connect in the format of key:
value. The left side of the first colon in the string will become the header name; everything after the
first colon will be the header value. Both will be trimmed of leading/trailing whitespace. This will
always add a new header with the specified value; it will never override a header that Connect would
otherwise have set. Multiple definitions can be used to provide multiple custom headers.

Type: multi-string
Default: unspecified

FrameOptionsContent The value for the X-Frame-Options HTTP header for all user-uploaded content
(Shiny apps, RMDs, etc.). If empty, no header will be added.

Type: string

87

Default: <empty-string>

FrameOptionsDashboard The value for the X-Frame-Options HTTP header for the Connect dashboard and
all other Connect pages. If empty, no header will be added.

Type: string
Default: DENY
HideVersion If true, will suppress display of the server version and build numbers.
Type: boolean
Default: false

NodeName The name of this node. If not specified, the contents of the RSTUDIO_CONNECT_NODE_NAME envi-
ronment variable or the special file /proc/sys/kernel/hostname are used, in that order.

Type: string
Default: $RSTUDIO_CONNECT_NODE_NAME

A.3 HTTP

The HTTP section contains configuration properties which control the ability of RStudio Connect to listen
for HTTP requests. RStudio Connect must be configured to listen for either HTTP or HTTPS requests
(allowing both is acceptable).

These properties must appear after [HTTP] in the configuration file.

Listen RStudio Connect will listen on this network address for HT'TP connections. The network address
can be of the form :80 or 192.168.0.1:80. Either HTTP.Listen or HTTPS.Listen is required.

Type: string
Default: <empty-string>
NoWarning Disables warnings about insecure (HTTP) connections.
Type: boolean
Default: false

ForceSecure RStudio Connect will mark cookies secure on its unsecured connection. This option should be
used when RStudio Connect is behind a secure proxy.

Type: boolean
Default: false

A.4 HTTPS

The HTTPS section contains configuration properties which control the ability of RStudio Connect to listen
for HTTPS requests. RStudio Connect must be configured to listen for either HT'TP or HT'TPS requests
(allowing both is acceptable).

These properties must appear after [HTTPS] in the configuration file.

88

Listen RStudio Connect will listen on this network address for HT'TPS connections. The network address
can be of the form :443 or 192.168.0.1:443. Either HTTP.Listen or HTTPS.Listen is required.

Type: string
Default: <empty-string>

Key Path to a private key file corresponding to the certificate specified with HTTPS.Certificate. Required
when HTTPS.Certificate is specified.

Type: string
Default: <empty-string>

Certificate Path to a TLS certificate file. If the certificate is signed by a certificate authority, the certificate
file should be the concatenation of the server’s certificate followed by the CA’s certificate. Must be
paired with HTTPS.Key.

Type: string
Default: <empty-string>

Permanent Advertises to all visitors that this server should only ever be hosted securely via HTTPS.
WARNING: if this is set to true — even temporarily — visitors may be permanently denied access to
your server over an unsecured (non-HTTPS) protocol. This sets the secure flag on all session cookies
and adds a Strict-Transport-Security HTTP header with a value of 30 days.

Type: boolean
Default: false
MinimumTLS Minimum TLS version supported. Valid values are 1.0, 1.1, and 1.2.
Type: string
Default: 1.1

ExcludedCiphers List of TANA strings for ciphers to exclude. See https://www.iana.org/assignments/
tls-parameters/tls-parameters.xml for a list of all known cipher strings. e.g.: TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA excludes DES ciphers.

Type: multi-string
Default: unspecified

A.5 HTTPRedirect

The HTTPRedirect section contains configuration properties which control the ability of RStudio Connect to
listen for HTTP requests and then redirect all traffic to some alternate location. This is useful when paired
with an HTTPS.Listen configuration.

These properties must appear after [HTTPRedirect] in the configuration file.

Listen RStudio Connect will listen on this network address for HTTP connection and redirect to either the
HTTPRedirect.Target or Server.Address target location. The network address can be of the form
:8080 or 192.168.0.1:8080. Useful when you wish all requests to be served over HT'TPS and send
users to that location should they accidentally visit via an HTTP URL. Must be paired with either
HTTPRedirect.Target or Server.Address.

Type: string

Default: <empty-string>

89

https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml

Target The target for redirects when users visit the HTTPRedirect.Listen HTTP service. Server.Address
is used as a redirect target if this property is not specified.

Type: string
Default: <empty-string>

A.6 Licensing

The Licensing section contains configuration properties which control how RStudio Connect interacts with
its licensing system.

These properties must appear after [Licensing] in the configuration file.

LicenseType Enable remote or local validation. local is traditional activation, whereas remote uses floating
licensing.

Type: string
Default: local

RemoteRetryFrequency When Connect loses its lease, it will begin automatically attempting to acquire a
lease by RemoteRetryFrequency. Use a value of 0 to disable retries.

Type: duration
Default: 10s
ExpirationEmail Enables sending of email when the license approaches expiration.
Type: boolean
Default: true

ExpirationUIWarning Enables display of dashboard warning to admin and publishers when the license
approaches expiration.

Type: boolean

Default: true

A.7 Database

The Database section contains configuration properties which control the location of and how RStudio
Connect interacts with its database.

These properties must appear after [Database] in the configuration file.

Provider The type of database. Either sqlite or postgres.
Type: string (case-insensitive)
Default: sqlite

Dir The directory to store database support files.
Type: string

Default: {Server.DataDir}/db

90

MaxIdleConnections The maximum number of database connections that should be retained after they
become idle. If this value is less-than or equal-to zero, no idle connections are retained.

Type: integer
Default: 5

MaxOpenConnections The maximum number of open connections to the database. If this value is less-than
or equal-to zero, then there is no limit to the number of open connections.

Type: integer
Default: 10

ConnectionMaxLifetime The maximum amount of time a connection to the database may be reused. If
this value is less-than or equal-to zero, then connections are reused forever.

Type: duration
Default: 60s

A.8 SQLite

The SQLite section contains configuration properties which control the location of and how RStudio Connect
interacts with the SQLite database.

These properties must appear after [SQLite] in the configuration file.

Dir The directory containing the RStudio Connect database. Must reference a directory on the local
filesystem and not on a networked volume like NFS.

Type: string
Default: {Database.Dir}
Backup When enabled and Provider is sqlite, periodically backs up the database
Type: boolean
Default: true
BackupFrequency How often to back up the SQLite database
Type: duration
Default: 24h

BackupRetentionLimit Connect will periodically delete backups older than this number. Set to 0 to disable
sweeping, for example, if you plan to manage your backups with an external task.

Type: integer
Default: 3

A.9 Postgres

The Postgres section contains configuration properties which control the location of and how RStudio
Connect interacts with its postgres.

These properties must appear after [Postgres] in the configuration file.

91

URL The fully qualified URL to connect to a Postgres database
Type: string
Default: <empty-string>

InstrumentationURL The fully qualified URL to connect to a Postgres database where instrumentation data
will be written.

Type: string

Default: <empty-string>

A.10 Authentication

The Authentication section contains configuration properties which control how users will log into RStudio
Connect.

These properties must appear after [Authentication] in the configuration file.

Provider Specifies the type of user authentication. Allows values of password, oauth2, 1dap, pam, or proxy.
Type: string (case-insensitive)
Default: password

Name Specifies a meaningful name for your authentication provider. This presented on the sign-in page and
gives users context about the credentials being requested. If unspecified, RStudio Connect will use a
generic name for the chosen provider. Just using your company name is often a good choice.

Type: string
Default: RStudio Connect
Lifetime The lifetime of an authenticated session.
Type: duration
Default: 30d

Inactivity The period of time after which inactive sessions are considered idle and therefore invalid.
Effective only when non-zero and less than Authentication.Lifetime.

Type: duration
Default: 0

Notice Text of notice displayed to the user on the login, sign up, and user completion pages. Useful for
displaying notices and reminders to users about the system and the data they enter.

Type: string
Default: <empty-string>
APIKeyAuth Whether API key authentication is enabled.
Type: boolean
Default: true
ChallengeResponseEnabled Whether a second factor challenge-response is enabled
Type: boolean
Default: false

92

CookieSweepDuration Duration between sweeps of expired cookies
Type: duration
Default: 1h

A.11 Password

The Password section contains configuration properties which control how RStudio Connect’s default password
authentication provider behaves.

See Section 10.5 for details about configuring password authentication for RStudio connect.

These properties must appear after [Password] in the configuration file.

UserInfoEditableBy Specifies who is able to modify user attributes. Accepted configurations are ‘Admin’,
‘AdminAndSelf’. If ‘Admin’ is specified, only administrators can edit user attributes. ‘AdminAndSelf’
expands the permissions by allowing a user to edit their own user attributes.

Type: string (case-insensitive)
Default: AdminAndSelf

SelfRegistration Allow users to self-register. Self-registered users will be created using the role specified
in the Authorization.DefaultUserRole setting.

Type: boolean
Default: true

WebSudoMode Whether web-sudo mode is enabled. Web-sudo mode will ensure that users are prompted to
re-enter their password before performing sensitive actions.

Type: boolean
Default: true

WebSudoModeDuration The lifetime of web-sudo mode. This is the amount of time before a user will be
prompted to enter their password again when performing sensitive actions.

Type: duration
Default: 5m

A.12 OAuth2

The 0Auth?2 section contains configuration properties which control how RStudio Connect communicates with
Google OAuth2 servers in order to authenticate users.

Section 10.7 contains more information about configuring RStudio Connect to use Google for authentication.

These properties must appear after [0Auth2] in the configuration file.

ClientId Identifier for OAuth2 client. Required for all OAuth2 configurations.
Type: string

Default: <empty-string>

93

ClientSecret Client secret for the configured client ID. One of OAuth2.ClientSecret or OAuth2.ClientSecretFile
must be specified when using OAuth2.

Type: string
Default: <empty-string>

ClientSecretFile Path to file containing the client secret for the configured client ID. One of
OAuth2.ClientSecret or OAuth2.ClientSecretFile must be specified when using OAuth2.

Type: string
Default: <empty-string>
AllowedDomains Space-separated list of domains permitted to authenticate.
Type: string
Default: <empty-string>
Reloadable: true

AllowedEmails Space-separated list of email addresses permitted to authenticate. When used without
OAuth2.AllowedDomains, only the email addresses listed here will be allowed access. When used with
OAuth2.AllowedDomains, the email addresses listed here will be added to those with valid domains.

Type: string
Default: <empty-string>
Reloadable: true

DemoteSearchErrors Disables logging of user search errors. Recommended only for public servers where
gmail.com accounts or accounts from multiple, unrelated Google Apps domains appear.

Type: boolean
Default: false

A.13 LDAP

The LDAP section contains configuration properties which control how RStudio Connect communicates with
an LDAP or Active Directory server.

See Section 10.6 for details about how to configure RStudio Connect with LDAP authentication. Section D
contains many configuration examples.

The LDAP section is different from many other configuration sections, as it allows multiple, distinctly named
configuration instances. This name is case sensitive. A named section looks like:

[LDAP "European LDAP Server"]

All of the LDAP configuration properties must appear after [LDAP "<name>"] in the configuration file.

ServerAddress Specifies the location of the LDAP/AD server. This should be of the form <host>:<port>.
The host may be either an IP or DNS address. Most LDAP/AD servers operate on port 389 or 636.

Type: string

Default: <empty-string>

94

TLS When enabled, all connections to your LDAP/AD server will use TLS (SSL).
Type: boolean
Default: false

StartTLS When enabled, the connection will initially be made on an insecure port then the channel will be
upgraded to TLS using StartTLS.

Type: boolean
Default: false

ServerTLSInsecure This option controls if RStudio connect will verify the server’s certificate chain and
host name. When enabled, RStudio Connect will accept any certificate presented by the server and
any host name in that certificate. Setting to true is susceptible to man-in-the-middle attacks but is
required in some circumstances, such as when using a self-signed certificate.

Type: boolean
Default: false
TLSCACertificate Path to a certificate authority used to connect an LDAP server.
Type: string
Default: <empty-string>
UserObjectClass The name of the LDAP objectClass used to define users.
Type: string
Default: <empty-string>
UserFilterBase An LDAP filter clause used to select user objects. Defaults to objectClass={UserObjectClass}.
Type: string
Default: <empty-string>

UserFirstNameAttribute The LDAP user attribute containing a user’s first name. This is often the
givenName attribute. This attribute is case-sensitive.

Type: string
Default: <empty-string>

UserLastNameAttribute The LDAP user attribute containing a user’s last name. The sn attribute will
usually contain last name. This attribute is case-sensitive.

Type: string
Default: <empty-string>

UserEmailAttribute The LDAP user attribute containing a user’s email address. Many systems use the
mail attribute. This attribute is case-sensitive.

Type: string
Default: <empty-string>

UsernameAttribute The LDAP user attribute containing a user’s username. Commonly used attributes
include uid, cn, and sAMAccountName. This attribute is case-sensitive.

Type: string
Default: <empty-string>

95

UniqueIdAttribute The LDAP attribute with an immutable value which uniquely identifies objects. Com-
monly used attributes include objectGUID (Microsoft AD), entryUUID (OpenLDAP), orclGuid (Oracle
OID), ibm-entryUUID (IBM RACF), GUID (Novell eDirectory). Please refer to your LDAP vendor
documentation for the correct value.

Type: string
Default: DN

BindDN A DN for a read-only admin account that is used during double-bind authentication and for certain
operations that do not occur during the login sequence (such as searching). Must be paired with
BindPassword.

Type: string
Default: <empty-string>
BindPassword The password for the BindDN account.
Type: string
Default: <empty-string>

BindPasswordFile Path to file containing the bind password. Either BindPassword or BindPasswordFile
may be specified when using LDAP, but if both are set, it is an error.

Type: string
Default: <empty-string>

AnonymousBind Enable anonymous bind. An anonymous user must have rights to search and view all
pertinent groups, group memberships, and users.

Type: boolean
Default: false
UserSearchBaseDN The base DN used when performing user searches.
Type: string
Default: <empty-string>

PermittedLoginGroup Limit who can log into Connect by specifying a group DN. Multiple definitions can
be used to provide multiple groups.

Type: multi-string
Default: unspecified

GroupObjectClass The name of the LDAP ‘objectClass’ used to define groups. Commonly this is ‘group’ or
‘posixGroup’.

Type: string
Default: <empty-string>
GroupSearchBaseDN The base DN used when performing group searches.
Type: string
Default: <empty-string>
GroupFilterBase An LDAP filter clause used to select group objects. Defaults to objectClass={GroupObjectClass}.
Type: string

Default: <empty-string>

96

GroupNameAttribute The LDAP group attribute containing a group’s name. Commonly this is ‘cn’ or
‘sAMAccountName’. This attribute is case-sensitive.

Type: string
Default: <empty-string>

GroupUniqueIdAttribute The LDAP attribute with an immutable value which uniquely identifies groups.
In general, users and groups use the same value. Please refer to your LDAP vendor documentation for
the correct value for groups.

Type: string
Default: DN

WebSudoMode Whether web-sudo mode is enabled
Type: boolean
Default: true

WebSudoModeDuration The lifetime of web-sudo mode.
Type: duration
Default: 5m

Logging Enables logging for all LDAP operations.
Type: boolean
Default: false

A.14 PAM

The PAM section contains configuration properties which control how RStudio Connect interacts with the
PAM (Pluggable Authentication Module) API.

See Section 10.8 for details about configuring an appropriate PAM authentication profile for RStudio connect.
See Section 12.7 for information about using PAM sessions when launching R processes.

These properties must appear after [PAM] in the configuration file.

Service Specifies the PAM service name that RStudio Connect will use when authenticating users.
Type: string
Default: rstudio-connect
UseSession Use PAM sessions when launching R processes.
Type: boolean
Default: false

SessionService Specifies the PAM service name that RStudio Connect will use for running R processes.
This PAM service cannot require user credentials when executed by root, or all R processes run by
Connect will fail yielding error code 70.

Type: string
Default: su

97

AuthenticatedSessionService Specifies the PAM service name that RStudio Connect will use for running
R processes with cached user credentials. This can be used with a Kerberized PAM service if Kerberos
exposes certain resources to the R process.

Type: string
Default: su

WebSudoMode Whether web-sudo mode is enabled
Type: boolean
Default: true

WebSudoModeDuration The lifetime of web-sudo mode.
Type: duration
Default: 5m

A.15 Proxied Authentication

The ProxyAuth section contains configuration properties which control how RStudio Connect utilizes an
external authentication server which proxies all requests.

See Section 10.9 for details about configuring an appropriate proxied authentication for RStudio connect.

UsernameHeader Specifies the name of the header that will contain a username provided by the proxy.
Type: string

Default: X-Auth-Username

A.16 Authorization

The Authorization section contains configuration properties which control permissions and privileges when
accessing RStudio Connect.

These properties must appear after [Authorization] in the configuration file.

DefaultUserRole Specifies what abilities given to a newly created user. Allows values viewer, publisher,
or administrator.

Type: string (case-insensitive)
Default: viewer

UsersListingMinRole Specifies the minimum role level required to list users. Allows values viewer,
publisher, or administrator.

Type: string (case-insensitive)

Default: viewer

98

A.17 Applications

The Applications section contains configuration properties which control how RStudio Connect communicates
with R processes.

These properties must appear after [Applications] in the configuration file.

RunAs User used to invoke R.
Type: string
Default: rstudio-connect
RunAsCurrentUser Allows content to execute as the logged-in user when using PAM authentication.
Type: boolean
Default: false

RConfigActive Specifies a value for the R_CONFIG_ACTIVE environment variable for R processes; supported
by the config package.

Type: string
Default: rsconnect
Supervisor Specifies a command to wrap the execution of R.
Type: string
Default: <empty-string>

HomeMounting Specifies that the contents of /home should be hidden from R processes with additional bind
mounts. The existing /home will have the home directory of the RunAs user mounted over it. If RunAs
does not have a home directory, an empty temporary directory will mask /home instead. Launched R
processes can discover this location through the the HOME environment variable.

Type: boolean
Default: false

TempMounting Specifies that per-process temporary directories are hidden from other R processes with
additional bind mounts. If disabled, R processes may inspect or modify the temporary data of other
processes.

Type: boolean
Default: true

ProhibitedEnvironment Environment variables that users are not allowed to override. Environment variables
specified here will be added to the default set.

Type: multi-string

Default: CONNECT_SHARED_SECRET, HOME, LOGNAME, R_CONFIG_ACTIVE, RSC_EMAIL_SUBJECT,
RSC_REPORT_NAME, RSC_REPORT_RENDERING_URL, RSC_REPORT_SUBSCRIPTION_URL, RSC_REPORT_URL,
RSTUDIO_PANDOC, TMPDIR, USER, USERNAME

ShinyBookmarking Toggles support for on-disk Shiny bookmarking state. Configuring Shiny applications to
use server bookmarking is described in this article.

Type: boolean

Default: true

99

https://shiny.rstudio.com/articles/bookmarking-state.html

ShinyErrorSanitization Toggles support for Shiny error sanitization as described in this article.
Type: boolean
Default: true

ShinyIsolation Specifies if a multi-Shiny R Markdown document deployment attempts to serve all docu-
ments from a single process. Disable if interactive documents expect in-process shared state.

Type: boolean
Default: true
ExplicitPublishing Content requires an explicit publication step after creation.
Type: boolean
Default: false

MostPermissiveAccessType The broadest access type publishers may assign to content. More permissive ac-
cess types are disallowed. Applies to administrators when Applications.AdminMostPermissiveAccessType
is not set. Allows values all, logged_in, or acl.

Type: string
Default: all

AdminMostPermissiveAccessType The broadest access type administrators may assign to content. More
permissive access types are disallowed. The Applications.MostPermissiveAccessType value applies
to administrators when this property is not set.

Type: string
Default: all

RenderingSweepLimit The maximum number of renderings retained for any one application. When this
limit is reached, the oldest renderings for an application will be removed. If this setting is not set
or is less than 1, Connect will not remove renderings with respect to the number of renderings per
application.

Type: integer
Default: 30

RenderingSweepAge The maximum age of a rendering retained for any one application. Renderings older
than this setting will be removed. If this setting is not set or is of a zero value, Connect will not remove
renderings with regards to its age.

Type: duration
Default: 30d
RenderingSweepFrequency How often should Connect look for and purge renderings.
Type: duration
Default: 1h

ViewerOnDemandReports Allow logged in report viewers to generate an ad-hoc rendering. The
ViewerCustomizedReports property is implicitly disabled when this property is disabled.

Type: boolean

Default: false

100

https://shiny.rstudio.com/articles/sanitize-errors.html

ViewerCustomizedReports Allow logged in report viewers to customize the parameters of an ad-hoc render-
ing.

Type: boolean
Default: false

BundleReapFrequency Time between the worker that deletes filesystem data for bundles in excess of our
retention limit.

Type: duration
Default: 24h

BundleRetentionLimit Maximum number of bundles per app for which we want to retain filesystem data.
The default is 0, which means retain everything.

Type: integer
Default: 0

ScheduleConcurrency Number of scheduled reports permitted to execute in parallel. A setting of zero
disables scheduled execution on this host.

Type: integer
Default: 2

DisabledProtocols List of comma-delimited protocols to disable on the SockJS client. Allows
values of websocket, xhr-streaming, iframe-eventsource, iframe-htmlfile, xhr-polling,
iframe-xhr-polling, or jsonp-polling. Protocols xdr-streaming and xdr-polling are always
disabled.

Type: string
Default: <empty-string>

A.18 Packages

The Packages section contains configuration properties which alter how R packages are installed and managed.
See Section 15 for details.

These properties must appear after [Packages] in the configuration file.

HTTPProxy Value to be set for the http_proxy environment variable during package installation when content
is deployed. When set, this will override the http_proxy environment variable only when content is
built by connect.

Type: string
Default: <empty-string>

HTTPSProxy Value to be set for the https_proxy environment variable during package installation when
content is deployed. When set, this will override the https_proxy environment variable only when
content is built by connect.

Type: string
Default: <empty-string>

101

External Package to be excluded from packrat build. This can be provided multiple times, once for each
package. You will need this package available in your library path.

Type: multi-string
Default: unspecified

A.19 Client

The Client section contains configuration properties which control the behavior of browsers when interacting
with applications. Interactive Shiny applications are the primary example.

These properties must appear after [Client] in the configuration file.

ReconnectTimeout The amount of time to allow a user connection to be restored. If a zero value, reconnects
will be disabled. Disabling reconnects can cause instability with the session$allowReconnects (TRUE)
feature in Shiny.

Type: duration
Default: 15s

A.20 Runtime/Scheduler

The Scheduler section contains configuration properties which control how RStudio Connect manages R
processes for deployed Shiny applications and Plumber APIs. These properties are managed on an individual
application under the Runtime tab.

RStudio Connect makes a determination on each new client connection about whether or not it needs to
spawn an additional R process. That computation analyzes the number of current R processes and the
number of active connections against those processes. If a substantial percentage of connections are consumed,
RStudio Connect will create a new process rather than causing the existing processes to become more busy.
That percentage of connection use is called the “load factor”.

The algorithm that considers the current load factor looks like the following pseudocode.

// Given:

// numProcesses

// - The number of R processes for the current application.

// numConnections

// - The number of connections across all R processes associated
/7 with the current application.

allowedConnections = numProcesses * Scheduler.MaxConnsPerProcess
currentlLoadFactor = numConnections / allowedConnections
if currentLoadFactor > Scheduler.LoadFactor {
// Create a new process if the new process will not ezceed
// Scheduler.MazProcesses

}

The Scheduler.InitTimeout and Scheduler.IdleTimeout properties may need adjusting when a Shiny
application takes a very long time to startup. Increasing InitTimeout will allow more time for the Shiny
application to start. An increase to IdleTimeout lets idle R processes linger longer so they are available the
next time a request arrives - avoiding the startup penalty.

Worker processes are terminated when none of the following hold:

o Active client connections to the process

102

e Client connection during prior Schedule.IdleTimeout period
e Process is needed to satisfy the LoadFactor application setting
e Process is needed to satisfy the MinProcesses application setting

Any one of these conditions will keep a worker process alive. Consider a Shiny application configured
with IdleTimeout=10m and MinProcesses=1. The process continues running if it is the only instance of
that application, well beyond its configured IdleTimeout. Terminating that process would violate the
MinProcesses=1 constraint.

The scheduler properties can be changed in the configuration file and apply to all Shiny applictions. The
RStudio Connect dashboard allows custom scheduler settings for individual applications.

We recommend that Scheduler property adjustment be done gradually.

These properties must appear after [Scheduler] in the configuration file.

MaxProcesses Specifies the total number of concurrent R processes allowed for a single application.
Type: integer
Default: 3

MaxConnsPerProcess Specifies the maximum number of client connections allowed to an individual R process.
Incoming connections which will exceed this limit are routed to a new R process or rejected.

Type: integer
Default: 20
LoadFactor Controls how aggressively new R processes will be spawned.
Type: decimal
Default: 0.5
InitTimeout Maximum time to wait for an app to start.
Type: duration
Default: 60s
IdleTimeout Minimum time a worker process remains alive after it goes idle (no active connections).
Type: duration
Default: 5s

MinProcessesLimit Maximum value allowed for the MinProcesses setting on an application level. All ap-
plications default to MinProcesses=0, but MinProcesses can be increased to this limit per application.

Type: integer
Default: 10

MaxProcessesLimit Maximum value allowed for the MaxProcesses setting on an application level. All
applications take the value of MaxProcesses as default but can be individually adjusted. This setting
prohibits a single application from consuming too many processes.

Type: integer
Default: 20

ConnectionTimeout Maximum time allowed without data sent or received across a client connection. A
value of 0 means connections will never time-out (not recommended).

Type: duration

103

Default: 1h

ReadTimeout Maximum time allowed without data received from a client connection. A value of 0 means
a lack of client (browser) interaction will never cause the connection to close. This is useful when
deploying dashboard applications which send regular updates but have no need for interactivity.

Type: duration
Default: 1h

A.21 Jobs

The Jobs section contains configuration properties which control the retention of metadata associated with R
process execution.

These properties must appear after [Jobs] in the configuration file.

MaxCompleted The maximum number of completed jobs preserved on disk for any one application. When this
limit is reached, the oldest completed jobs for an application will be deleted as new jobs are launched.
On-disk job metadata is removed if either the MaxCompleted or 0ldestCompleted restrictions are
violated.

Type: integer
Default: 1000

OldestCompleted The maximum age of a completed job retained on disk. Jobs older than this setting will
be deleted. Set to zero to remove restrictions on the age of a completed job. On-disk job metadata is
removed if either the MaxCompleted or OldestCompleted restrictions are violated.

Type: duration
Default: 304

A.22 Historical Information

The Metrics section contains configuration properties which control how RStudio Connect manages the
rserver-monitor process for monitoring the use of resources (CPU, memory, etc.) for historical metrics. It
also controls how discrete event instrumentation is managed.

See Section 16 for more details about historical information in Connect.

These properties must appear after [Metrics] in the configuration file.

Enabled Specifies whether or not the rserver-monitor process that collects historical metrics will be started.
Type: boolean
Default: true
User The user for the rserver-monitor process.
Type: string
Default: {Applications.RunAs}

104

DataPath The path for writing log entries and RRD database files.
Type: string
Default: {Server.DataDir}/metrics
Interval The frequency of historical metrics collection.
Type: duration
Default: 60s
RRDEnabled Enable logging of historical metrics to RRD.
Type: boolean
Default: true
GraphiteEnabled Enable logging of historical metrics to Graphite.
Type: boolean
Default: false
GraphiteHost Host to which to send Graphite historical metrics.
Type: string
Default: 127.0.0.1
GraphitePort Port to which to send Graphite historical metrics.
Type: integer
Default: 2003
GraphiteClientId Optional Client ID to include along with Graphite historical metrics.
Type: string
Default: <empty-string>
Instrumentation Enable the recording of instrumented data, such as shiny app usage by user.
Type: boolean
Default: true
InstrumentationServerHeartbeat Controls how often the server will update its lifetime.
Type: duration
Default: 30m

A.23 Load Balancing

The LoadBalancing section contains a configuration property that determines whether or not clients must
use a version of rsconnect with cookie-based sticky session support.

These properties must appear after [LoadBalancing] in the configuration file.

EnforceMinRsconnectVersion Require a minimum version of rsconnect for cookie-based sticky session
support.

Type: boolean
Default: false

105

B Command-Line Interface

Connect includes tools with a command-line interface (CLI). These tools are typically targeted towards
actions that might be performed when the web server is offline or is otherwise inaccessible. Other CLI
commands are useful for performing actions against the server in a batch or scripted fashion.

These utilities are installed in /opt/rstudio-connect/bin/. They use the configuration defined in
/etc/rstudio-connect/rstudio-connect.gcfg unless you specify an alternate configuration file with the
--config flag.

B.1 User Management

This utility helps you list users and modify user attributes such as role, username, name, email, and DN.
This can be used to recover if you are unable to access an RStudio Connect administrative account.

Connect’s usermanager CLI also includes the ability to dump audit logs. By default, the logs are displayed in
a formatted table, but you can also choose to output comma-separated values for easy analysis in other tools.

The usermanager utility can only be run when Connect is stopped if you use the SQLite database provider.
See Section 5.1 for information on stopping and restarting Connect. See Section 9 for information on database
providers.

B.1.1 Commands

The usermanager utility supports the following commands:

e list: Lists users

e alter: Alter a user

e tokens: Lists tokens

e deactivate: Deactivates tokens
e audit: Dumps audit logs

B.1.2 Flags

Configuration for usermanager:

o —-config: The full or relative path to a Connect configuration file (.gcfg). Defaults to
/etc/rstudio-connect/rstudio-connect.gcfg.

Flags for the 1list command:

o —-users: List users (default).

e ——groups: List groups.

e —-include-locked: Includes locked user accounts in the list.

o --detect-unreachable: Detect LDAP objects (users or groups) no longer visible to Connect.

Flags for the alter command:

e —-username: Specifies the user name of the user to alter.

e —-user-id: Specifies the user id of the user to alter.

e —-user-guid: Specifies the user guid of the user to alter.

e ——groupname: Specifies the group name of the group to alter.

e ——group-id: Specifies the group id of the group to alter.

e ——group-guid: Specifies the group guid of the group to alter.

e ——group-owner: Specifies a new owner will be set on the group (except LDAP). Requires specifying
both a user to alter and group to alter.

106

--new-groupname: Specifies the new name for the group (except LDAP).

--new-username: Specifies the new username for the user (only Password, OAuth2).
--new-last-name: Specifies the new last name for the user (except LDAP, OAuth2).
--new-first-name: Specifies the new first name for the user (except LDAP, OAuth2).

--new-email: Specifies the new email address for the user (except LDAP, OAuth2).
--update-ids-using: Update all Unique IDs for users or groups matching the specified attribute (only
LDAP).

--new-unique-id: Specifies a new Unique ID (base64 value or Distinguished Name) for a user or group.
--new-role: Specifies the role to set for the user. Allowed roles are viewer, publisher, and
administrator.

--lock: Locks the user. Fails if ——unlock is also present.

—-unlock: Unlocks the user. Fails if —-1ock is also present.

--force-demoting: Force demotion of the last remaining administrator.

--yes: Alter without asking for confirmation. Use with caution.

Flags for the token command:

--active: Show only active tokens.

Flags for the deactivate command:

--all: Deactivate all tokens.

Flags for the audit command:

--csv: Output comma-separated values.

B.1.3 Examples:

Display help:

/opt/rstudio-connect/bin/usermanager help

Specify a custom configuration file

sudo /opt/rstudio-connect/bin/usermanager --config /etc/connect/mycustomconfig.gcfg list

List unlocked users:

sudo /opt/rstudio-connect/bin/usermanager list

Or:

sudo /opt/rstudio-connect/bin/usermanager list --users

Note: This distinguished name field (DN) is included in the results only when LDAP is used.

List all users (locked and unlocked):

sudo /opt/rstudio-connect/bin/usermanager list --include-locked

Or:

sudo /opt/rstudio-connect/bin/usermanager list --users --include-locked

Note: The distinguished name field (DN) is included in the results only when LDAP is used.

List all groups:

sudo /opt/rstudio-connect/bin/usermanager list --groups

Note: The distinguished name field (DN) is included in the results only when LDAP is used.

107

List all users no longer seen by Connect (LDAP):

sudo /opt/rstudio-connect/bin/usermanager list --detect-unreachable

Or:

sudo /opt/rstudio-connect/bin/usermanager list --users --detect-unreachable

List all groups no longer seen by Connect (LDAP):

sudo /opt/rstudio-connect/bin/usermanager list --groups --detect-unreachable

Promote the user john to an administrator role

sudo /opt/rstudio-connect/bin/usermanager alter --username john --new-role administrator

To do the same as above to a user without a username, use --user-id to specify the ID of the desired user.
IDs can be discovered via usermanager list.

sudo /opt/rstudio-connect/bin/usermanager alter --user-id 1 --new-role administrator

Or with ——user-guid to specify the GUID of the desired user. GUIDs can be discovered via usermanager
list.

sudo /opt/rstudio-connect/bin/usermanager alter \
--user—-guid 00000000-0000-4000-a000-000000000000 --new-role administrator

Note: --username, -—user-id and --user-guid can be used interchangeably but not at the same
time. Some users may not have names defined in which case only --user-id or --user-guid
will work.

Change the owner of the group Administrators to be the user administrator (not supported with LDAP
groups):
sudo /opt/rstudio-connect/bin/usermanager alter --groupname Administrators \

--new-owner --username admin
To do the same as above to a user without a group name, use -—group-id to specify the ID of the desired
group. IDs can be discovered via usermanager list --groups.
sudo /opt/rstudio-connect/bin/usermanager alter --group-id 1 --new-owner --username admin
Or with —-group-guid to specify the GUID of the desired groups. GUIDs can be discovered via usermanager
list --groups.
sudo /opt/rstudio-connect/bin/usermanager alter \

—--group-guid 00000000-0000-4000-a000-000000000000 --new-owner --username admin

Note: --groupname, —-group-id and --group-guid can be used interchangeably but not at the
same time the same applies to —~—username, -—user-id and --user-guid while specifying the
new owner.

Demote the last remaining administrator to a non-administrative role

sudo /opt/rstudio-connect/bin/usermanager alter --username admin --new-role publisher --force-demoting

Update all users’ Unique IDs currently using DN:

sudo /opt/rstudio-connect/bin/usermanager alter --update-ids-using DN

Or:

sudo /opt/rstudio-connect/bin/usermanager alter --users --update-ids-using DN

108

Use this command after you have configured LDAP.UniqueIdAttribute for the first time.

Note: If the current value for the LDAP.UniqueIdAttribute setting is "DN" or not present this
command does nothing.

Update all groups’ Unique IDs currently using DN:

sudo /opt/rstudio-connect/bin/usermanager alter --groups --update-ids-using DN

Use this command after you have configured LDAP.GroupUniqueIdAttribute for the first time.

Note: If the current value for the LDAP.GroupUniqueIdAttribute setting is "DN" or not present
this command does nothing.

Updating all users’ Unique IDs to use another attribute:

sudo /opt/rstudio-connect/bin/usermanager alter --update-ids-using < attribute >

Or:

sudo /opt/rstudio-connect/bin/usermanager alter --users --update-ids-using < attribute >
Where <attribute> is the case-sensitive name of the LDAP attribute used previously in the RStudio Connect
configuration for identifying LDAP users such as objectGUID (Microsoft AD) or entryUUID (OpenLDAP).

Use this command after you have re-configured LDAP.UniqueIdAttribute with a different attribute. This
command can also be used to revert back to "DN" after removing LDAP.UniqueIdAttribute.

Note: If the current value for the UniqueIdAttribute setting is the same as <attribute> this
command does nothing.

Updating all groups’ Unique IDs to use another attribute:

sudo /opt/rstudio-connect/bin/usermanager alter --groups --update-ids-using < attribute >
Where <attribute> is the case-sensitive name of the LDAP attribute used previously in the RStudio Connect
configuration for identifying LDAP groups such as objectGUID (Microsoft AD) or entryUUID (OpenLDAP).

Use this command after you have re-configured LDAP.GroupUniqueIdAttribute with a different attribute.
This command can also be used to revert back to "DN" after removing LDAP.GroupUniqueIdAttribute.

Note: If the current value for the GroupUniqueIdAttribute setting is the same as <attribute>
this command does nothing.

Change a user’s or a group’s Unique ID (DN) individually:
sudo /opt/rstudio-connect/bin/usermanager alter --username john \

--new-unique-id="CN=John Johnson,0U=Users,DC=example,DC=com"

sudo /opt/rstudio-connect/bin/usermanager alter --groupname Admins \
--new-unique-id="CN=Admins, 0U=Groups,DC=example,DC=com"

Use this command when the user’s or group’s DN has changed on the LDAP server and usermanager
--update-ids-using was not able to reach and recover them.
Change a user’s or a group’s Unique ID (base64) individually:

sudo /opt/rstudio-connect/bin/usermanager alter --username john \
-—-new-unique-id="+4FRO9WW0+0ecjM20sf30ZA=="

sudo /opt/rstudio-connect/bin/usermanager alter --groupname Admins \
--new-unique-id="hYGFGBI987ud+hg7H8dndd=="

109

Use this command when the value for the attribute used as the user’s or group’s Unique ID has changed on
the LDAP server and usermanager --update-ids-using was not able to reach and recover them.

Note: An LDIF (LDAP Data Interchange Format) representation of the user object may contain
values in the base64 format. This is true for binary values (such as objectGUID from Active
Directory). On the other hand, string values (such as entryUUID from OpenLDAP) must be
encoded as base64 before use. Please refer to your LDAP documentation how to obtain an LDIF
for a user.

Dump audit logs to screen

sudo /opt/rstudio-connect/bin/usermanager audit

Dump audit logs (comma-separated) to a file:

sudo /opt/rstudio-connect/bin/usermanager audit --csv > ~/audits.txt

B.2 Migration Utility

The migrate utility assists system administrators in migrating from one database to another or in transitioning
RStudio Connect to a new server. For a high-level overview of the steps necessary to migrate from SQLite to
Postgres, see the section on changing database providers. For the high-level steps involved in completing a
server migration, see 4.8.

B.2.1 Commands

The migrate utility supports four commands

e db: Migrate data between databases

e rebuild-packrat: Rebuilds the Packrat cache for all content on the server. This command can be
used WHILE RStudio Connect is running.

e repair-content-permissions: Checks and corrects permissions and ownership for the working direc-
tories of each deployed piece of content.

e help: Displays help

B.2.2 Flags

Configuration for migrate:

o ——config: The full or relative path to a Connect configuration file (.gcfg). Defaults to
/etc/rstudio-connect/rstudio-connect.gcfg.

Flags for the migrate db command:

o —-verify: Verify migration only.
e ——drop-all: Drop all existing data in the target before migrating.

By default, the migrate db command will copy the data from the SQLite database into PostgreSQL, and
verify the migration. We assume that the PostgreSQL destination does not contain any data unless the
--drop-all flag is included.

Data migration copies data from the SQLite database to the PostgreSQL database. Data in the SQLite
database remains after the migration; it is not removed. A verification step runs after the data copy completes
and confirms the integrity of the migration:

¢« Row counts for all tables are verified.
o FEach record is checked for the correct values.

110

Data verification will fail if Connect is started prior to the completion of data verification. Please ensure that
Connect remains down until the data migration and verification are complete.

Flags for the rebuild-packrat command:

o —force: Delete the Packrat cache before rebuilding
e —fast-fail: Stop when the packages for a single application cannot be installed.

Proactively rebuilds the Packrat cache for all applications on the server. When the -force flag is used, the
entire existing Packrat cache directory will be deleted first. This command can be used for instances in which
the Packrat cache may be incomplete for the current environment. For example, if the system only has one
version of R installed and it has been upgraded, the cache will not include packages built on the appropriate
version of R. Similarly, if you migrate your RStudio Connect installation to a different server which might
have different versions of system libraries, you should delete the cache and rebuild it as discussed in 4.8.

When the -fast-fail flag is used, rebuilding the Packrat package cache is halted when the packages for any
application cannot be installed or verified as installed.

Flags for the repair-content-permissions command:
No flags supported.

Scans for issues with the permissions and ownership of application directories on the server. This command
can be used if you have moved some data on disk and need to confirm that the attributes were transferred

properly.

B.2.3 Examples

Display help:
/opt/rstudio-connect/bin/migrate help

Migrate SQLite data to an empty PostgreSQL database:

sudo /opt/rstudio-connect/bin/migrate db

Migrate SQLite data to a PostgreSQL database, first dropping all data in the PostgreSQL database:
sudo /opt/rstudio-connect/bin/migrate db --drop-all

Perform data verification only:

sudo /opt/rstudio-connect/bin/migrate db --verify

Specify a custom configuration file:

sudo /opt/rstudio-connect/bin/migrate --config /etc/connect/mycustomconfig.gcfg db

Delete the existing Packrat cache and rebuild it by pro-actively rebuilding each application’s library.

sudo /opt/rstudio-connect/bin/migrate rebuild-packrat --force

Check and fix any disk permission errors for applications’ working directories.

sudo /opt/rstudio-connect/bin/migrate repair-content-permissions

111

C Using a Custom Landing Page

C.1 Overview

It is possible to specify a custom landing page that your anonymous/logged-out users will see when they visit
Connect.

C.2 Configuration

Use the Server.LandingDir configuration setting to specify the path to a custom landing page. If you do
not specify an absolute path, the server will resolve the path starting at your Connect server installation
directory (probably /opt/rstudio-connect).

Please see A for more information on the Server.LandingDir setting.

C.3 Custom Landing Page Assets

Include all assets (JavaScript, CSS, images, etc.) for your custom landing page in the directory you specified
in the Server.LandingDir configuration setting. Be sure to include an index.html, which will be served by
default.

C.4 Example

See the /opt/rstudio-connect/examples/landing-page directory for an example custom landing page.
You can enable this example landing page by adding the following configuration setting and restarting the
Connect server.

; /etc/rstudio-connect/rstudio-connect.gcfg

[Server]
LandingDir = examples/landing-page

D LDAP/AD Configuration Examples

This section contains sample RStudio Connect configurations to help you get started with LDAP authentication.
We have provided a single bind and a double bind example (double bind is recommended).

The LDIF (LDAP Data Interchange Format) file contained in D.3 describes a LDAP organization used in our
examples.

D.1 Single Bind

Here is a partial RStudio Connect configuration file showing how to connect using single-bind LDAP
authentication. We are assuming the LDIF contained in D.3 describes the LDAP structure.

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "myLDAPserverSingle"]

ServerAddress = 127.0.0.1:389

UniqueIdAttribute = entryUUID

UserSearchBaseDN = "ou=People,dc=company,dc=com"
UserObjectClass = posixAccount

112

UserFirstNameAttribute = givenName
UserLastNameAttribute = sn
UserEmailAttribute = mail
UsernameAttribute = uid

D.2 Double Bind

Here is a partial RStudio Connect configuration file showing how to connect using double bind LDAP
authentication. We are assuming the LDIF contained in D.3 describes the LDAP structure.

; /etc/rstudio-connect/rstudio-connect.gcfg
[LDAP "myLDAPserver"]

ServerAddress = 127.0.0.1:389

BindDN = cn=admin,dc=company,dc=com"

BindPassword = "password"
UniqueIdAttribute = entryUUID
UserSearchBaseDN = "ou=People,dc=company,dc=com"

UserObjectClass = posixAccount
UserFirstNameAttribute = givenName
UserLastNameAttribute = sn
UserEmailAttribute = mail
UsernameAttribute = uid

D.3 LDIF

Here is an LDIF (LDAP Data Interchange Format) file describing a hypothetical organization.

dn: ou=People,dc=company,dc=com
objectClass: organizationalUnit

dn: ou=Groups,dc=company,dc=com
objectClass: organizationalUnit

dn: cn=membera-grp,ou=Groups,dc=suba,dc=company,dc=com
objectClass: posixGroup

cn: membera-grp

gidNumber: 50000

memberUid: membera

dn: cn=memberb-grp,ou=Groups,dc=subb,dc=company,dc=com
objectClass: posixGroup

cn: memberb-grp

gidNumber: 50001

memberUid: memberb

dn: cn=memberc-grp,ou=Groups,dc=subc,dc=company,dc=com
objectClass: posixGroup

cn: memberc-grp

gidNumber: 50002

memberUid: memberc

dn: uid=membera,ou=People,dc=suba,dc=company,dc=com
objectClass: inetOrgPerson

113

objectClass: posixAccount
objectClass: shadowAccount
uid: membera

sn: A

givenName: Member

cn: Member A

displayName: Member A
uidNumber: 20000
gidNumber: 50000
userPassword: memberaldap
gecos: MemberA

loginShell: /bin/bash
homeDirectory: /home/membera
mail: membera@company.com

dn: uid=memberb,ou=People,dc=subb,dc=company,dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: memberb

sn: B

givenName: Member

cn: Member B

displayName: Member B
uidNumber: 20001

gidNumber: 50001
userPassword: memberbldap
gecos: MemberB

loginShell: /bin/bash
homeDirectory: /home/memberb
mail: memberb@company.com

dn: uid=memberc,ou=People,dc=subc,dc=company,dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: memberc

sn: C

givenName: Member

cn: Member C

displayName: Member C
uidNumber: 20002

gidNumber: 50002
userPassword: membercldap
gecos: MemberC

loginShell: /bin/bash
homeDirectory: /home/memberc
mail: memberc@company.com

114

E RStudio Connect Deployment Guide

E.1 Overview

This guide will cover the details of the deployment process in RStudio Connect. For most users, these details
can be safely ignored, as the details are handled automatically via push-button publishing. However, some
users may want to programmatically publish content using the rsconnect package or may have run into an
error during deployment.

E.2 Programmatic Deployment

To programmatically publish content to RStudio Connect, use the functions deployDoc, deployApp,
deployAPI, and deploySite from the rsconnect package. Each of these functions will require a user
account and a connected server. To setup an account on a server use addConnectServer and connectUser.
To view currently configured accounts use accounts. For more details visit the rsconnect reference pages.

Each of the deployment functions listed above can be supplied with optional arguments. If additional
arguments are not supplied, defaults are determined based on the content being deployed. All of the
deployment functions follow a similar, underlying process. This appendix explains the process in detail.

E.3 Step 1: Building the Bundle

Connect builds an application bundle for the deployed content. The bundle contains the source code, any
data files, and a manifest (JSON file) with metadata about the bundle and environment.

E.3.1 Application Metadata

rsconnect infers a number of attributes about the content including:

1. appMode: static, shiny, rmd-static, rmd-shiny, api
2. hasParameters: whether or not the R Markdown file includes parameters

In the case of an R Markdown document the YAML is parsed. Otherwise, .R files are flagged as shiny
applications, html files and pdf files are flagged as static. (When a plot is published, the plot is wrapped in
an html file).

E.3.2 List of Target Files

Next, rsconnect identifies the relevant files for the application. appFiles or appFileManifest can be passed
as arguments to deployApp to specify the required files. Otherwise, rsconnect attempts to identify the
required files using a number of heuristics.

For R Markdown documents and static HTML files, external dependencies are discovered using the rmarkdown
function find_external_resources. This function searches for dependencies in the R Markdown file and
the rendered HTML file. The function is able to identify files in the YAML header (if a parameter is a
file), logos, images, data files used within R code chunks, and HTML dependencies. This process includes a
minimal, client-side “render” of the document (the Rmd is not rendered, it is converted to plain markdown
and then rendered to HTML without running any R code). Think of this rendering as creating a skeleton of
the final HTML document. During push-button deployment, this initial “render” will show up in the IDE R
Markdown tab.

The dependencies for R Markdown websites are identified uniquely. Websites should be deployed by calling
deploySite.

115

Troubleshooting: To avoid client side rendering, deploy the content directly using deployApp
with appFiles or appFileManifest.

For Shiny applications and Plumber APIs, rsconnect adds all the files in the project directory and subdirectories
with a few exceptions: .Rproj file, the packrat directory, and the rsconnect directory. Files are added up to
the specified max bundle size: getOption("rsconnect.max.bundle.size").

Troubleshooting: try rsconnect::listBundleFiles(appDir) to see the identified dependencies

E.3.3 Lint

After identifying the target file and dependency files, rsconnect applies a series of linters. The rsconnect
linters attempt to identify common problems that might prevent an application that works locally from
working after deployment. These checks ensure the application code does not contain:

1. absolute paths
2. invalid relative paths
3. inconsistent capitalization among paths (the Connect server has case sensitive file paths)

The linters currently do not check for database connections.

Troubleshooting: You can disable the linters by passing 1int=FALSE to the deployment function.

E.3.4 Create Temporary Folder

If the files pass the linters, RStudio Connect creates the initial bundle by copying all of the files to a temporary
directory.

E.3.5 Library Dependencies

Next, rsconnect attempts to identify the package dependencies required by the app. (This step is skipped
for static content). rsconnect does this by using packrat. Packrat is a dependency management tool for R
designed to keep projects isolated, portable, and reproducible. rsconnect deployment does not use all of
packrat’s functionalities. (For example, the package sources are not installed on the client in the project’s
packrat subdirectory). For more information visit: https://github.com/rstudio/packrat

Packrat looks through the R code and makes note of any library() or require() calls. Packrat creates a
list of the required packages and saves the list in the packrat.lock file. This lock file includes the package
version and package dependencies. This process is recursive. In addition, the lock file also includes information
on the version of R being used, the type of repository containing the package, and the specific URI for each
type of repository. A few notes about this process:

Packrat searches in the order of . 1ibPaths

For example, if the code includes library(babynames), Packrat will look for babynames inside the first
library in .libPaths. Imagine there are two libraries: A and B and .libPaths(A,B). In A, babynames
is version 1.0. In B, babynames is version 2.0. Packrat will assume the app depends on version 1.0. To
understand this behavior, recall that a library is just a folder containing an installed R package. The most
common scenario where this occurs is when the target directory is part of an existing packrat project.

Repositories

Most packages come from CRAN. In the packrat lockfile, packrat will record the names of packages
originating from CRAN as well as a specific URL for CRAN (i.e. CRAN='https:cran.rstudio.com'). The
url is determined by the state of options("repos") during deployment. The same process is used for other
repositories: Github, BioConductor, and local repositories. In the case of a local repository, the repository
URI may be a location on disk.

116

https://github.com/rstudio/packrat

For the edge case of an internal package from a local repository, be sure the package’s Repository option
(found in the package’s Description file) is mapped to a repo URI in the current options("repos"). For
example, imagine a package called myPackage is stored in a local repo called myRepo. The myPackage
Description file should include repository:myRepo. options("repos") should define a URI for myRepo
during deployment runtime, i.e. options(repos = list(myRepo="file://path_to_private_repo")).

Troubleshooting: try rsconnect:::performPackratSnapshot (appDir). This command will
create the packrat lock file helping to identify the dependencies, corresponding repos, and URLs
expected for deployment.

Once the lock file is created, rsconnect proceeds to copy all of the description files for the packages listed in
the packrat lock file. The files are copied into packrat/desc. Normally, a packrat lockfile would be enough
to fully reproduce the package environment. This additional step is necessary just in case the version of
packrat on the client is significantly different from the version on the server.

E.3.6 Manifest

Next, rsconnect generates the actual manifest. This manifest includes a list of the relevant source code,
package dependencies, and other metadata including the R version, the locale, the app mode, content category,
etc. The R version is determined while building the manifest. The R version listed in the manifest will
later be used by Connect to attempt to re-create a server-side environment consistent with the client. While
creating the manifest, rsconnect will also attempt to determine the primary document (if not already listed).
Checksums are stored for each file, including the packrat description files. Finally, the manifest is copied to
the temporary bundle directory alongside the code and packrat directory.

For example, a target directory with the structure:

targetDir
- app-.R
+ dataDir
- data.csv

where app.R includes:

library(babynames)
library(shiny)

The final bundle will contain:

bundleDir
- app-.R
- manifest. json
- index.htm
+ dataDir
- data.csv
+ packrat
- packrat.lock
+ desc
- babynames
- shiny

The manifest.json file will include:

{
"version" : 1,
"locale" : "en US",
"platform" : "3.2.5",

117

"metadata" : {

"appmode" : "shiny",
"primary_rmd" : null,
"primary_html" : null,
"content_category" : "application",
"has_parameters" : false
X,
"packages" : {
¥,
"files" : {
"app.R" : {
"checksum" : "bc81fad5645566fe5d228abf57bbad44"
1,
"packrat/desc/babynames" : {
"checksum" : "eel4db463dc57f078fealc3d74628104"
X,
X,

}

The packages entry will contain a version of each package’s DESCRIPTION file. The files entry will
include a checksum for each package description file.

Troubleshooting: try rsconnect: :bundleApp(appDir, appFiles=rsconnect::listBundleFiles(appDir),
...). This command will generate a tarball containing the application bundle.

E.4 Step 2: Push Bundle to Connect

In step 2 rsconnect publishes the bundle to the server. This is done with a POST request to an HTTP
endpoint. rsconnect supports multiple protocols for making HTTP requests. rsconnect looks for the server
address and account information created when the IDE is linked to Connect. Publisher privileges are required
for a user to link the IDE to Connect and publish content. These privileges are checked when the user sets
up an account for publishing (this process creates a public-secret key pair unique to the user and Connect
server).

Troubleshooting: try rsconnect:accounts()

When an application bundle is successfully deployed, rsconnect generates a folder in the original target
directory called rsconnect. This folder contains a DCF file with information on the deployed content (i.e. the
name, title, server address, account, URL, and time). If you re-deploy the same directory, rsconnect checks
for this file allowing the deployed content to be updated. Redeployments will deploy and activate the new
bundle for this application. You may use the “source versions” menu option in the dashboard to revert the
application to a previous bundle. Redeployment will only work if the document is the same content type. For
instance, you can not redeploy an R Markdown document after adding runtime:shiny. Instead, deploy the
document to a new endpoint by changing the appName.

Currently, each deployed application is tied to an account. For example, imagine userl deploys an app and
shares the code with user2. If user2 deploys the app, a new copy of the app would be deployed. This is true
even if userl shares the rsconnect folder. (The only way for a different collaborator to deploy to the same
app is for both collaborators to use a service account where the username and password are shared by both
users. Both users would also need to go through the steps that link the IDE to Connect - generating the
public-private keypair).

118

In some occasions, a single user will have multiple accounts on one server, or an account on multiple servers.
To deploy a bundle to a different server or under a different account, specify the account and user parameters
in the deployApp function. After successful deployment, a new DCF file will be added to the rsconnect folder.
If you deploy the same content from a new machine to the server, using the same account, rsconnect will
prompt you asking whether or not the content is a redeploy. This occurs even if the rsconnect folder does not
exist on the new machine.

E.5 Step 3: Bundle is deployed on Connect

Once the bundle is published to the server, Connect prepares the content to be deployed. This process follows
a number of steps:

E.5.1 Parse the Manifest

The bundle is uncompressed at a unique location (assigned based on appid and bundle id). The manifest
from the uncompressed bundle is parsed to determine the type of content. The R version is also identified
and matched based on the available R versions on the Connect server. You can find more details here. Files
are checked against the checksum listed in the manifest to ensure content was not lost or corrupted during
transfer.

E.5.2 Packrat Restore

Packrat is used to ensure the required packages are available. For every package identified in the manifest:

Packrat checks to see if the required package is available in the global cache. (The cache is specific to the
version of R matched previously).

If the package is available, a symlink is created that points to the package within the global cache. If a
symlink is not possible, the package will be copied from the global cache.

If the package is not available, packrat attempts to install the package. The package is requested from the
repo URL identified during bundling. The package is installed and built from source and the installed package
is added to the global cache.

Many R packages have system-level dependencies (Java, openssl, etc). If the package fails to
install, be sure these system dependencies are installed and available.

All packages are installed as the default Applications.RunAs user (typically rstudio-connect). Connect
ensures that the package libraries and uncompressed bundle have the appropriate permissions based on the
application specific RunAs user.

E.5.3 R Markdown Render

If the deployed content is an R Markdown document (excluding documents with runtime:shiny) the Rmd
file is rendered on the server. If the document is parameterized, the default parameters are used.

The application is presented as deployed. User input is currently required to publish the application and
specify any server-side attributes (such as tuning runtime settings, permissions, etc).

E.6 Other Frequently Asked Questions

1. My app deployed but does not run?

119

http://docs.rstudio.com/connect/admin/r.html#r-version-matching

If the application is deployed but does not run, the error message will be caught and displayed in the
application log (visible at the app url in Connect on the logs panel).

2. Can I get more details about the deployment failure?

Yes, set the option “Show diagnostic information after publishing” in Tools -> Global Options ->
Publishing

3. Will database connections work once deployed?

Database connections will only work if the same drivers (and potentially DSNs) are available on the client
and on Connect. At this time there is not a linter to check for connection strings.

4. T use a specific distribution of R (i.e. MRO). Will matching work?
The version of R written to the manifest will be the version used during runtime.
On the server side, Connect attempts to match the version of R in the manifest as described here.

Currently Connect only matches based on the version - no other supplemental information (such as distribution)
is maintained. For that reason, to ensure a specific distribution is used on the server, install only that
distribution for the desired version.

5. Are bundles compressed?

Bundles are not be compressed. Bundles do not need to be read completely into RAM during deploy-
ment. Typically the only bottleneck is upload speed. You can specify a maximum bundle size using:
getOption("rsconnect.max.bundle.size").

F Using Continuous Integration to Deploy Content

F.1 Overview

It is possible to use the rsconnect R package to programmatically deploy content to a Connect server. This
is particularly useful when combined with a continuous integration (CI) server that builds and deploys your
content.

F.2 Prerequisites

Currently, it is only feasible to use a CI server to update content that you originally published from the same
server. You cannot update content that you published from elsewhere. To clarify, the CI server must perform
both the initial deployment and subsequent updates of the application.

Configuring a CI server to deploy content with rsconnect requires that you log in to the CI server with the
credentials the CI server uses to run rsconnect. For example, if your CI server uses the jenkins account,
you need to log in as jenkins to configure rsconnect for the CI server.

You must be familiar with deploying content with rsconnect. Please see E for more information.

F.3 Configuring a CI Server to Deploy Content to Connect
F.3.1 Installing rsconnect

The rsconnect package is used to deploy content to Connect. Install it with the following command in the
R console. In practice, rsconnect may already be available.

120

http://docs.rstudio.com/connect/admin/r.html#r-version-matching

install.packages("rsconnect")

F.3.2 Configuring rsconnect

Configuring rsconnect requires a user home directory. In this use case, a valid home directory is
required for the jenkins user account.

You must configure rsconnect for the user account that will be used by the CI server to deploy content with
rsconnect. In this document, we assume that this user is jenkins.

sudo su jenkins

Next, while running as jenkins, run R and issue the following commands in the R console:

library(rsconnect)
addConnectServer ("http://myserveraddress:3939", "mylocaldeployserver")
connectUser (server="mylocaldeployserver")

The rsconnect server name, mylocaldeployserver, is an arbitrary name that is used to identify
a Connect server when using rsconnect. You can choose any name you wish.
After the last command, you will see output similar to this:

A browser window should open; if it doesn’t, you may authenticate manually by visiting
http://myserveraddress:3939/_ login___ ?url=http%3A%2F%2Fmyserveraddress%3A3939%
2Fconnect %2F %23%2F tokens % 2F Tc8{636cH59fff521 eef4888b163dcf64%2Factivate&user id=0.

Waiting for authentication. . .

Copy the URL in the output above, then paste it into a Web browser and authenticate with the Connect
user credentials for your CI server. In this example, we assume that you wish to deploy content with the
ci-server Connect acount.

After successfully connecting the ci-server Connect account to rsconnect, you will see this message at the
R console:

Account registered successfully: CI Server (ci-server)

The server and account information are persisted to configuration files on the server in the jenkins user’s
home directory:

/home/jenkins/.config/R/connect/servers/mylocaldeployserver.dcf
/home/jenkins/.config/R/connect/accounts/mylocaldeployserver/connectuser.dcf
F.3.3 Deploying Content with rsconnect

Now rsconnect is configured to use the ci-server Connect account when running with the jenkins server
account.

F.3.4 Package and R Version Compatibility

rsconnect will use the package libraries and the R installation available on the CI server to create the
manifest used by Connect. It is crucial that the environment on the CI server is compatible with the content
you are deploying. Ideally, you should maintain the same R version, the same available packages, and the
same package versions that you use in development.

121

http://myserveraddress:3939/__login__?url=http%3A%2F%2Fmyserveraddress%3A3939%2Fconnect%2F%23%2Ftokens%2FTc8f636c59ffff521eef4888b163dcf64%2Factivate&user_id=0
http://myserveraddress:3939/__login__?url=http%3A%2F%2Fmyserveraddress%3A3939%2Fconnect%2F%23%2Ftokens%2FTc8f636c59ffff521eef4888b163dcf64%2Factivate&user_id=0

F.3.5 CRAN Note

If you don’t already have it in an .RProfile, be sure to specify a default CRAN repository in your application
before issuing the rsconnect command to deploy content. For example:

options (repos=c(CRAN="https://cran.rstudio.com"))
deployDoc(doc="out.Rmd", appName="ServerDeployedDoc",
account="ci-server", server="mylocaldeployserver")

Please note that Connect content must be published before it is publicly available. This means that you must
log in to Connect and publish the content after the initial deployment. Subsequent automated deployments
of the same content are automatically published and require no manual intervention.

F.4 Warning and Security Information
A CI server account that is configured to deploy content to Connect can deploy additional content to Connect
without further authentication.

For example, Bob logs in to a server console as Unix user jenkins, which is the account used by his CI server.
Bob then configures rsconnect to deploy content. During the authorization step, Bob signs in to Connect
as a publisher with user name ci-server. Now, any other CI processes running on this server under the
jenkins user account can deploy additional content using the Connect user ci-server.

G Programmatic Deployment with rsconnect

G.1 Overview

It is possible to use the rsconnect R package to programmatically deploy content to a Connect server.
Furthermore, Connect-hosted content can use rsconnect to deploy additional content to itself or to another
Connect server.

Configuring Connect to deploy content with rsconnect requires:

1. administrator privileges for Connect, and
2. sudo or root privileges on the server where Connect is installed.

G.2 Use Case: A Shiny Application

Here we present a use case that explains how to configure Connect for programmatic deployment. Please see
G.4 for an example Shiny application for this use case.

G.2.1 Use Case Scenario

Bob White develops a Shiny application (see G.4) that:

1. Renders an R Markdown document.
2. Deploys the generated document using rsconnect

Bob deploys his Shiny application to Connect. The application, as noted above, can automatically deploy
documents it generates to Connect. However, the Connect server must first be configured to authorize
deployment from rsconnect.

122

G.2.2 Installing rsconnect

The rsconnect package is not yet available on Bob’s Connect server, so Bob installs it by running R as
root (sudo R) and issuing the following command in the R console. In practice, rsconnect may already be
available.

install.packages("rsconnect")

G.2.3 Configuring a Custom “RunAs” User

Since Bob does not want to allow arbitrary Connect users to deploy content using rsconnect, he configures
a custom RunAs user, robert, for his Shiny application. See Section 12.5 for configuring the RunAs user on a
per-application basis in Connect.

G.2.4 Configuring rsconnect
Important Note: rsconnect configuration requires a user home directory. In this use case, a valid home
directory is required for the robert user account.

Since Bob’s Shiny application will be running as the robert user, Bob (at a server console) switches to the
robert user:

sudo su robert

Next, while running as robert, Bob runs R and issues the following commands in the R console:

library(rsconnect)
rsconnect: :addConnectServer ('http://myserveraddress:3939', 'mylocaldeployserver')
rsconnect: : connectUser (server='mylocaldeployserver')

NOTE: the rsconnect server name, mylocaldeployserver, is an arbitrary name that is used to
identify a Connect server when using rsconnect. You can choose any name you wish.
After the last command, Bob sees the following output:

A browser window should open; if it doesn’t, you may authenticate manually by visiting
http://myserveraddress:3939/__ login___ ?url=http%3A%2F %2Fmyserveraddress%3A3939%
2Fconnect%2F%23%2F tokens %2F Tc8f636c59ft521eef4888b163dcf64%2Factivate&user__id=0.

Waiting for authentication. . .

Bob copies the URL in the output above and pastes it into a Web browser. Then Bob authenticates with his
Connect user credentials. Bob’s Connect user name (with publishing privileges) is rwhite.

After successfully connecting his Connect account to rsconnect, Bob sees this message at the R console:
Account registered successfully: Bob White (rwhite)

The server and account information are persisted to configuration files on the server in Bob’s home directory:

/home/robert/.config/R/connect/servers/mylocaldeployserver.dcf
/home/robert/.config/R/connect/accounts/mylocaldeployserver/connectuser.dcf

G.2.5 Deploying Content with rsconnect

Now rsconnect is configured to use the rwhite Connect account when running with the robert server
account. If Bob’s Shiny application uses robert as its RunAs user, it can deploy content using rsconnect.

123

http://myserveraddress:3939/__login__?url=http%3A%2F%2Fmyserveraddress%3A3939%2Fconnect%2F%23%2Ftokens%2FTc8f636c59ffff521eef4888b163dcf64%2Factivate&user_id=0
http://myserveraddress:3939/__login__?url=http%3A%2F%2Fmyserveraddress%3A3939%2Fconnect%2F%23%2Ftokens%2FTc8f636c59ffff521eef4888b163dcf64%2Factivate&user_id=0

G.2.6 CRAN Note

If you don’t already have it in an RProfile, be sure to specify a default CRAN repository in your application
before issuing the rsconnect command to deploy content. For example:

options (repos=c(CRAN="https://cran.rstudio.com"))
rsconnect: :deployDoc(doc="out.Rmd", appName="ServerDeployedDoc",
account="rwhite", server="mylocaldeployserver")

G.3 Warning and Security Information

Please restrict access to any Connect content that can deploy arbitrary content via rsconnect. The Connect
Dashboard’s “Permissions” document provides details on securing content in Connect.

Do not enable deployment via rsconnect for the default Applications.RunAs user; if you do so, all your
Connect users will be able to deploy content using your rsconnect credentials.

Once a Connect user authorizes rsconnect to deploy content under a particular server account, any content
that runs under that server account can use rsconnect to deploy content without further authentication.

For example, Bob logs in to a server console as Unix user robert. Bob then configures rsconnect to deploy
content. During the authorization step, Bob signs in to Connect as a publisher with user name rwhite. Now,
any Connect application that is configured with a RunAs user of robert can deploy additional content using
the Connect user rwhite, regardless of who owns the application.

G.4 Example Shiny Application

Below is an example Shiny application that knits R Markdown text and deploys the resulting content using
rsconnect.

library(knitr)
library(rsconnect)
library(shiny)
library(shinyAce)
library (rmarkdown)

Default text for editor

defaultMarkdown <- '

Sample R Markdown

This is some markdown text. It may also have embedded R code

which will be executed.
1

A Shiny UI for editing R Markdown
ui <- shinyUI(
bootstrapPage (
headerPanel ("Embedded Deployment Example"),
div(
class="container-fluid",
div(class="row-fluid",
div(class="col-sm-6",
h2("Source R-Markdown"),
aceEditor("rmd", mode="markdown", value=defaultMarkdown),
actionButton("eval", "Update")

124

),

div(class="col-sm-6",
h2("Knitted Output"),
htmlOutput ("knitDoc")

A Shiny application that generates and deploys R Markdown content
server <- shinyServer(function(input, output, session) {

Only update and deploy when the 'Update' button is clicked
rmd <- eventReactive(input$eval, {

input$rmd
)

output$knitDoc <- renderUI({
writeLines(rmd(), "out.Rmd")
knit2html (input="out.Rmd", fragment.only = TRUE, quiet = TRUE)
options (repos=c(CRAN="https://cran.rstudio.com"))
rsconnect: :deployDoc(doc="out.Rmd", appName='"GeneratedDoc",

account="rwhite", server="mylocaldeployserver")
return(isolate (HTML(
readLines("out.html")

)))

b

1))

Run the application
shinyApp(ui = ui, server = server)

125

	Introduction
	System Requirements

	Getting Started
	Installation
	Initial Configuration

	License Management
	Capabilities
	Notification of Expiration
	Product Activation
	Connectivity Requirements
	Evaluations
	Licensing Errors
	Floating Licenses

	Files & Directories
	Program Files
	Configuration
	Server Log
	Access Logs
	Application Logs
	Variable Data
	Backups
	Server Migrations

	Server Management
	Stopping and Starting
	System Messages
	Health-Check
	Upgrading
	Purging RStudio Connect
	Docker

	High Availability and Load Balancing
	HA Checklist
	HA Limitations
	Updating HA Nodes
	Downgrading
	HA Details

	Running with a Proxy
	Nginx Configuration
	Apache Configuration

	Security & Auditing
	API Security
	Browser Security
	Audit Logs
	Application Environment Variables

	Database
	SQLite
	PostgreSQL
	Changing Database Provider

	Authentication
	Changing Authentication Provider
	Session Management
	Username requirements
	User Attribute Editability
	Password
	LDAP and Active Directory
	OAuth2 (Google)
	PAM
	Proxied Authentication

	User Management
	User Roles
	User Provisioning
	Group Support
	User Permissions
	Administrator Capabilities
	Locked Accounts
	Username Requirements
	User Renaming
	Command-Line Interface

	Process Management
	Sandboxing
	Temporary Directory
	Shiny Applications & Plumber APIs
	TensorFlow Model APIs
	User Account for R Processes
	Current user execution
	PAM sessions
	Path Rewriting
	Program Supervisors
	Using the config Package

	Content Management
	Sharing Settings
	Vanity Paths
	Tags
	Bundle Management
	API Keys

	R
	Installing R
	Upgrading R
	R Versions
	R Version Matching

	Package Management
	Package Installation
	Private Repositories
	Private Packages

	Historical Information
	Historical Metrics
	Historical Events

	Appendix
	Configuration Options
	Configuration Basics
	Server
	HTTP
	HTTPS
	HTTPRedirect
	Licensing
	Database
	SQLite
	Postgres
	Authentication
	Password
	OAuth2
	LDAP
	PAM
	Proxied Authentication
	Authorization
	Applications
	Packages
	Client
	Runtime/Scheduler
	Jobs
	Historical Information
	Load Balancing

	Command-Line Interface
	User Management
	Migration Utility

	Using a Custom Landing Page
	Overview
	Configuration
	Custom Landing Page Assets
	Example

	LDAP/AD Configuration Examples
	Single Bind
	Double Bind
	LDIF

	RStudio Connect Deployment Guide
	Overview
	Programmatic Deployment
	Step 1: Building the Bundle
	Step 2: Push Bundle to Connect
	Step 3: Bundle is deployed on Connect
	Other Frequently Asked Questions

	Using Continuous Integration to Deploy Content
	Overview
	Prerequisites
	Configuring a CI Server to Deploy Content to Connect
	Warning and Security Information

	Programmatic Deployment with rsconnect
	Overview
	Use Case: A Shiny Application
	Warning and Security Information
	Example Shiny Application

